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DAMPING OF STRUCTURAL COMPOSITES 

WITH VISCOELASTIC SHEAR-DAMPING MECHANISMS 

By Jerome E. Ruzicka, Thomas F. Derby, 
Dale W. Schubert and Jerome S. Pepi 

ABSTRACT 

An investigation is conducted to evaluate the so-called geometrical 

parameter of structural composites with viscoelastic shear-damping 

mechanisms. Design equations and graphs are developed for the geometrical 

parameter of a wide range of viscoelastic shear-damped structural composite 

designs. Using existing theory, manual and automated procedures are 

develo,ped for the prediction of the structure loss factor of structuralcomposites 

comprised of two elastic elements separated by a thin viscoelastic damping 

layer. Laboratory experiments are performed to verify the basic theory and 

design procedures developed. A comparison of theoretical predictions and 

experimental measurements of the structure loss factor is made for two- 

elastic-element structural comp’osites fabricated from various combinations 

of structural materials including aluminum, steel and fibre-glass. 
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DAMPING OF STRUCTURAL COMPOSITES 

WITH VISCOELASTIC SHEAR-DAMPING MECHANISMS 

By Jerome E. Ruzicka, Thomas F. Derby, 
Dale W. Schubert and Jerome S. Pepi 

Barry Controls 
Division of Barry Wright Corporation 

Watertown, Massachusetts 

SUMMARY 

An investigation of parameters important in the design of structural 
composites with viscoelastic shear-damping mechanisms has been conducted. 
Design equations and graphs are developed for the so-calied geometrical 
parameter of a wide range of viscoelastic shear-damped structural 
composites, which include: laminated beams and plates (comprised of solid 
and/or honeycomb structural sheets), box-beam constructions, bars of various 
cross-sections, square and circular tubes, structural shape beams including 
angle, channel, T- and I-sections, and a dumbbell model (which frequently 
provides a simplified representation of a more complex structural assembly). 

Using existing theory, manual and automated design procedures for the 
prediction of structure loss factor are developed for viscoelastic shear-damped 
structural composites comprised of two elastic elements separated by a thin 
viscoelastic damping layer. The design procedures which apply for any cross- 
section geometry and arbitrary structural and viscoelastic material properties, 
are used to predict the damping characteristics of a wide range of two-elastic- 
element structural composite beams employed in an experimental verification 
program, As a design example, the details of the numerical calculations for a 
typical structural composite beam are presented. 

Laboratory experiments have been performed to verify the theoretical 
predictions and to provide insight into practical design considerations. A 
comparison of theoretical predictions and experimental measurements of the 
structure loss factor is made for two-elastic-element structural composites 
fabricated from various combinations of structural materials including 
aluminum, steel and fibre-glass. Structural specimens include laminated 
beams comprised of solid sheets, solid and honeycomb sheets, honeycomb 
sheets, and structural channels. A total of 118 loss factor measurements 
were made for various free-free bending modes of 27 different beam specimens. 
A statistical analysis of this data compared to the theoretical values of loss 
factor indicated that the difference had a mean value of 0.6 per cent and a 
standard deviation of approximately 30 per cent. Consequently, it is concluded 
that the existing theory and the procedures developed for the prediction of the 
loss factor of two-elastic element viscoelastic shear-damped structural 
composites is satisfactory within accepted engineering accuracy. 



SECTION 1: INTRODUCTION 

The damping properties of structural fabrications can be considerably 

enhanced by the incorporation of viscoelastic shear-damping mechanisms in 

structural members and joints [Ref. 11. Special design configurations incor- 

porating distributed viscoelastic shear-damping mechanisms have been devised 

which consist of a combination of elastic beam or plate elements separated 

by layers of a viscoelastic damping material [Ref. 2-81. The elastic 

elements are made from common structural materials and the damping 

materials are generally polymers exhibiting high loss factors and relatively 

low values of stiffness. When structura 1 composites with constrained visco- 

elastic layers undergo flexural vibrations, the layers of viscoelastic damping 

material are subjected to cyclic shear strains, which cause energy of mechan- 

ical motion to be converted into thermal energy. Because of this energy 

conversion process , viscoelastic shear-damped structural composites are 

capable of exhibiting extremely high degrees of damping. 

Techniques for fabricating structural composites with viscoelastic 

shear-damping mechanisms include the use of adhesively bonded intermediate 

damping layers and self-bonding adhesive damping layers [I Ref. 2 1. The 

structural composites with adhesively bonded damping layers offer the 

advantage of being able to provide any thickness of viscoelastic damping 

material in the structural composite, since the damping layer can be produced 

in sheet form to the desired thickness prior to bonding between the elastic 

structural elements. The thickness of the self-bonding adhesive visco- 

elastic damping layer is limited; however, its use offers an advantage with 

regard to the relative simplicity of production and workability of the composite 

structure. 

Edrly investigations of distributed viscoelastic shear-damping mech- 

anisms were concerned with the damping effectiveness of a viscoelastic 

damping layer constrained between two structural sheets, where one sheet 

was very thin relative to the other [Ref. 3 I . This damped structural configura- 

tion was intended to represent the application of a damping tape (consisting of 

a thin metal foil with adhesive backing) to a structural beam requiring 
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additional damping. An evaluation was also made of the damping performance 

obtained by the application of a multiplicity of damping tapes to a structural 

beam [Ref. 41 . 

It was found that multiple damping tapes offered no significant 

improvement in damping at high frequencies (greater than lOOOHz), but 

provided a substantial increase in damping for lower frequencies. Furthermore, 

the damping provided by multiple damping tapes was essentially equal to that 

of a single damping tape having a foil thickness which equals the sum of the 

foil thicknesses of the multiple damping tape treatment and a viscoelastic 

damping layer thickness equal to that of only one of the multiple damping 

tapes. The same maximum degree of damping was obtained whether the 

damping tapes were applied to one or both sides of tne structural beam being 

damped; however, the frequency at which the maximum damping occurred 

differed for these two cases. These analyses applied for the case where the 

total foil thickness is considerably less than the structural beam thickness. 

Experiments indicated that the measured and theoretically predicted damping 

were in reasonably good agreement, with values of the structure loss factor 

being generally less than 0. 05 for practical damping tape treatments. 

An analysis was subsequently performed to predict tne damping 

properties of structural composites incorporating distributed viscoelastic 

shear-damping mechanisms for the case where the structural composites 

consisted of two elastic elements of arbitrary material and size with an 

intervening viscoelastic damping layer [Ref. 5, 6 1. For geometrical configura- 

tions incorporating a thin layer of viscoelastic damping material that is soft 

compared to the stiffness of structural materials employed in the structural 

composite, the structure loss factor n may be expressed in terms of three 

parameters, as follows: 

rl= 77@, x, Y) (1) 

where fi is the loss factor of the viscoelastic G-rear-damping material, X is 

defined as the shear parameter, and Y is defined as the geometrical 

parameter. 
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The damping material loss factor B is the ratio of the imaginary and 

real components of the complex shear modulus G* = G’ + jG”, as follows: 

/3= G’YG’ (2) 

where G” and G’ are the loss modulus and storage modulus of the visco- 

elastic material, respectively. The shear parameter X depends on the 

storage modulus and amount of viscoelastic material employed, the weight 

loading on the structural member, the flexural rigidity, the geometry of the 

cross-section, and the frequency of vibration. The geometrical parameter Y, 

which is a function only of the geometry of the cross-section and the modulus 

of elasticity of the elastic elements comprising the structural composite, may 

be expressed mathematically as follows [Ref. 5, 7, 81: 

WI, -- 
’ = (EI)o ’ (3) 

where (EI), is the flexural rigidity of the structural composite when its 

elastic members are uncoupled and (EI), is the flexural rigidity of the 

structural composite when its elastic members are completely coupled. 

Theoretical and experimental evidence indicates that high values of the 

geometrical parameter are required for a structural composite to exhibit a high 

degree of damping. Based on (1) the theory of viscoelastically damped beams 

with two elastic elements [Ref. 5 1, (2) the application of a lumped parameter 

model as a simplified representation of a viscoelastic shear-damped structural 

composite [ Ref. 7 1, and (3) experimental data acquired on various structural 

composites [Ref. 81, it is concluded that the geometrical parameter Y is a 

fundamental design parameter which plays a significant role in the performance 

of all structural composite designs which incorporate viscoelastic shear- 

damping mechanisms. Consequently even if the equivalent of the shear 

parameter X is not defined for a more complex structura 1 composite, the value 

of the geometrical parameter in itself provides a guide for arriving at a 

suitable design, especially when this information is coupled with previous 

practical experience of designing and evaluating viscoelastic shear-damped 

structural composites. 
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In general, the problem of designing structural composites with visco- 

elastic shear-damping mechanisms involves the selection of a viscoelastic 

damping material having a high loss factor p and arranging the cross-section 

geometry of the elastic elements to produce a high value of the geometrical 

parameter Y. Maximization of damping at a specified frequency or 

temperature, however, will require the optimization of the shear parameter X 

for two-elastic-element structural composites or an equivalent parameter for 

more complex structural composite designs. Alternately, subsequent to the 

selection of a viscoelastic damping material having a high value of loss 

factor fi and the determination of the geometrical parameter Y, a trial and 

error procedure can be employed to arrive at a damping material thickness 

which provides the degree of damping required in the frequency and tempera- 

ture ranges of interest. Naturally, other design considerations such as static 

stiffness, weight, stress, structure resonant frequency, and size, enter into 

the design process and must be evaluated with structural damping as joint 

design criteria. For most practical structural designs, it is generally 

desirable for the geometrical parameter Y to have a value between 0.5 

and 5. 

The present investigation is concerned with the development of data 

useful in the design of viscoelastic shear-damped structural composites and 

the experimental verification of theoretical predictions of structure loss 

factor. Specifically , the investigation encompasses the following studies: 

(1) Mathematical analysis of tne geometrical parameter Y for a 

wide range of viscoelastic shear-damped structural composite 

designs. 

(2) Development of simplified procedures for predicting the loss 

factor of viscoelastic shear-damped structural composites 

comprised of two elastic elements. 

(3) Performance of laboratory experiments on two-elastic-element 

viscoelastic shear-damped beams to evaluate the adequacy of 

the existing theory and design procedures developed. 

These three studies are discussed, respectively, in the following sections 

of this report. Particular emphasis has been placed on design configurations 
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which have potential application in air-borne and aerospace structural 

assemblies. Furthermore, analyses and experiments have been limited to 

structural composite designs which incorporate thin layers of relatively soft 

viscoelastic damping material; consequently, the results of the studies are 

. particularly applicable to structural composites which incorporate self- 

bonding adhesive damping layers as a distributed shear-damping mechanism. 
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SECTION 2: ANALYSIS AND DESIGN DATA FOR GEOMETRICAL PARAMETER 

This section of the report presents various mathematical methods by 

. which the geometrical parameter of viscoelastic shear-damped structural 

composites may be analyzed. These analyses are employed to develop 

design equations and graphs for the geometrical parameter of a wide variety 

of structural composite designs including: laminated beams and plates 

(comprised of solid and/or honeycomb structural sheets), box-beam 

constructions, bars of various cross-sections, square and circular tubes, 

structural shape beams (angle, channel, T- and I-sections), and a dumbbell 

model. Cross-sections of these structural composite designs are presented 

in Figures 2. 1 to 2. 8. In evaluating the geometrical parameter of these 

structural composite designs, the viscoelastic damping layer thickness 

and the number, modulus, and size of elastic elements are kept arbitrary 

whenever possible. In some cases, however, it is necessary to impose 

some restrictions to allow the development of useful graphical design data. 

Cross-sections of damped structural plates are presented in 

Figures 2. 1 to 2. 4. The plate designs shown in Figure 2.1 consist of 

laminated solid sheets, whereas the designs shown in Figures 2.2 and 2. 3 

consist of honeycomb sheets constrained by solid sheets, and laminated 

honeycomb sheets, respectively. The plate designs shown in Figure 2.4 

consist of box-beam or I-beam constructions constrained symmetrically by 

solid sheets. 

Cross-sections of damped structural bars are presented in Figure 2.5. 

The designs may be employed to produce square and round cross-section 

bars, as well as bars having cross-sections intermediate to these shapes. 

Cross-sections of damped tubes, both square and round, are presented in 

Figure 2. 6. 

Cross-sections of damped structural shape beams are presented in 

Figures 2.7 and 2. 8. Shown in Figure 2.7 are designs for damped angle, 

channel, and T- and I-sections. The dumbbell model shown in Figure 2. 8 

may be employed as a simple representation of more complex structural 



assemblies and is frequently useful in obtaining a first-order approximation 

of the mechanical characteristics of structural members such as box-beam 

and truss constructions. 

Cross-sections of other viscoelastic shear-damped structural 

composites, which are of a more complicated nature, are presented in 

Figures 2. 9 and 2.10. Figure 2. 9 shows structural beams of multilaminate 

construction; Figure 2. 10 shows structural beams of cell-insert construc- 

tion Ref. 7 I. Since these structural configurations involve too many 

parameters to develop specific design data, more generalized equations for 

the geometrical parameter must be employed for design purposes. 

Geometrical Parameter Analyses 

The fundamental equation for the geometrical .parameter stated by 

Equation (3) can be written in the following equiyalent form: 

(EI)co - (Wt 
y = (EI), - ’ = Wo (4) 

where (EI)O and (EI), represent the uncoupled and coupled flexural 

rigidities, respectively, and (EI), = (EI)m- (EI)o is the transfer flexural 

rigidity for the composite structure. 

The uncoupled condition corresponds to that wherein the elastic 

elements of the structural composite experience the same flexural deformations 

but act independent of each other with regard to their resistance to bending. 

Consequently, for the case where the viscoelastic shear-damping material 

is soft compared to the stiffness of the elastic elements used in the struc- 

tural composite, the uncoupled flexural rigidity (EI)O represents the “static” 

flexural rigidity (corresponding to the flexural stiffness exhibited for static 

loading), which is equal to the sum of the flexural rigidities of each elastic 

element about its own neutral axis. The coupled condition corresponds to 

that wherein the elastic and viscoelastic elements experience the same flex- 

ural deformations and act as a single unit with regard to resistance to bending. 

The coupled flexural rigidity (EI), , therefore, corresponds to the sum of the 
flexural rigidities of each elastic element about the composite neutral axis. 
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The relationships for geometrical parameter expressed by Equation (4) 

can be applied to calculate the geometrical parameter of any continuous 

composite structure by determining the location of the neutral axes and the 

flexural rigidities applicable for the uncoupled and coupled conditions. The 

neutral axes for the uncoupled condition are those axes passing through the 

center of the area elements comprising the structural composite. The 

composite neutral axis for the coupled condition is defined as that axis about 

which the total moment of the extensional stiffnesses EA is zero. Defining 3 

as the distance between the composite neutral axis and an arbitrary reference 

axis, the location of the composite neutral axis is specified by 

KC 
CEiAiGi 

“EiAi (5) 

where b i is the distance from the center of area Ai to the reference axis. 

Certain simplifications can be made when restrictions are placed 

on the geometry of the structural composite; three specific geometrical 

configurations in this category which are of considerable practical importance 

are structural composites consisting of two elastic elements, three elastic 

elements, and cell-insert constructions. Other practical configurations 

which result in design simplifications include orthogonally symmetric cross- 

sections and sheathing additions to cross-sections having an axis of 

symmetry. Discussions of these special cases follow. 

Two-elastic-element structural composites. - In using Equation (3) 

to determine the geometrical parameter of two-elastic-element structural 

composites, it is necessary to determine the location of the composite 

neutral axis as defined by Equation (5) in order to evaluate (EI),; this 

frequently results in a laborious analysis. By selecting the composite 

neutral axis as the arbitrary reference axis for taking the extensional stiff- 

ness moment, an equation for geometrical parameter can be developed for 

two-elastic-element structural composites which does not require knowledge 

of the location of the composite neutral axis. In this case, the geometrical 
parameter is given by 



MAI A2 d 2 

Y= 
@A& + A21 (M.4 + 12) 

03 

where M = El/E2 is the modulus ratio, A1 and A2 are the cross-section 

areas of the two elastic elements, 11 and I2 are the moments of inertia of 

the two areas, and d is the distance between the neutral axes of the two 

elastic elements. The requirement of determining the location of the compos- 

ite neutral axis is replaced by that of determining the distance between the 

neutral axes of the two elastic elements. This determination is relatively 

easy to make thereby simplifying the analysis of structural composites 

comprised of two elastic elements. 

Three-elastic-element structural composites. - Simplified equations 

for the geometrical parameter of three-elastic-element structural composites 

can be developed when two of the three elements are identical. In this case, 

the geometrical parameter is given by 

Y= 
ELAN [ElAl (dl-da)’ + EaAa (d12+dz2)] 

(2E1A1 + Ez Az ) (~&II + E2 12) 
(7) 

This equation requires the determination of dl and da, which are the 

distances between the neutral axes of the two identical elements and the 

third element; these distances have the same sign when the two identical 

elements are located on the same side of the third element and are of 

opposite sign when they are located on opposite sides of the third element. 

This determination is easily made compared to the difficulty generally 

encountered in establishing the location of the composite neutral axis by 

use of Equation (5). 

If the three .elements are arranged to produce a symmetrical cross- 

section (dl = -d2 E d), the geometrical parameter is given by 

2MA1 d2 
Y= 2M11 +Iz 03) 



where d is the distance between the neutral axes of the two outer (identical) 

elements and the neutral axis of the inner element (vyhich is also the compos- 

ite neutral axis since the inner element must be symmetrical for this case). 

Cell-insert structural composites. - Cell-insert composite structures 

consist of a cellular structural member in which structural insert members are 

separated from the hollow cells by a layer of viscoelastic shear-damping 

material, as illustrated in Figure 2. 10. The geometrical parameter for cell- 

insert constructions is evaluated by application of Equation (4) to obtain 

Y= EcAc%2 + CEiAiGi2 

EcIc + C EiIi (9) 

where c represents the distance from the neutral axis of a given area 

element to the composite neutral axis, and the subscripts c and i refer 

to cell and insert, respectively. This equation applies both for symmetrical 

and unsymmetrical cross-section configurations and requires the determination 

of the composite neutral axis location by use of Equation (5). Furthermore, it 

is assumed that the cell-member is constructed from only one material, while 

the inserts are of arbitrary shape, size, and material. 

The equation for geometrical parameter can be simplified for the case 

of a symmetrical cross-section. This implies that the neutral axis of the 

cell-structure coincides with the composite neutral axis, thereby requiring the 

distance EC to be zero. Hence, the geometrical parameter is given by 

CEiAiei2 

’ = EcIc + CEiIi (10) 

This equation applies for example, to the square tube, rectangular bar, and 

I-section cell-insert constructions shown in Figure 2. 10(a), (d) and’(e), 

respectively. 

A further simplification can be made by requiring the inserts to be 

of the same size and material, and be located at the same distance ci from 

the composite neutral axis. Designating Ni as the total number of inserts 
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(Ni = 2, 4, 6 ---), the geometrical parameter is given by 

Y= (Ni= 2, 4, 6 ---) (11) 

where r i = ‘/ Ii/Ai. This equation applies, for example, to the rectangular 

bar cell-insert construction shown in Figure 2. 10(d), and would also apply 

to the I-section construction shown in Figure 2. 10(e) if the inserts were 

identical in size, material and orientation relative to the composite neutral 

axis. 

There are a number of practical cell-insert symmetrical design 

configurations for which EcIc > > NiEiIi. For these cases, the geometrical 

parameter is given approximately by 

Y - Ni(-)(@)’ (Ni = 2, 4, 6 ---) (12) 

This equation, for example, provides a means of rapidly determining the 

geometrical parameter of the cell-insert I-beam shown in Figure 2. 10(e) 

when identical inserts having a relatively low value of flexural rigidity are 

employed. 

Orthogonally symmetric cross-sections. - When evaluating the 

geometrica 1 parameter of a structura 1 composite, the plane in which flexura 1 

vibrations occur must be specified. For cross-sections of arbitrary shape, 

a different geometrical parameter may apply for each plane of vibration 

considered. However, under certain circumstances, the geometrical 

parameter will be invariant with the plane of vibration and the direction of 

the neutral axis is immaterial. 

An example of this situation is a cross-section which has orthog- 

onal symmetry. This type of symmetry requires that the cross-section 
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geometry be symmetrical about a given axis and also be identical to the 

geometry relative to an orthogonal axis. For this case, it can be shown that 

the geometrical parameter has the same value regardless of the direction of 

the neutral axis. Typical structural composites which satisfy this require- 

ment include all the bar designs shown in Figure 2. 5 with the exception of 

the design of Figure 2. 5 (e). Also satisfying the orthogonal symmetry require- 

ment are the tube designs shown in Figure 2. S(a, b, c) and in Figure 2.10(a). 

Effect of symmetrical sheathinq addition. - In some instances, it may 
be desirable to provide a longitudinal elastic sheathing around the periphery of 

a viscoelastic shear-damped beam for use as an element positioning device, t0 

offer protection from various environments, to improve the physical appearance 

of the structural member, etc. The effect of such an addition on the geomet- 

rical parameter may be easily evaluated for the case wherein a constant thick- 

ness sheathing is added to a symmetrical cross-section such that its neutral 

axis coincides with the composite neutral axis of the beam. The addition of 

the sheathing increases the flexural rigidity for the uncoupled and coupled 

conditions by the same amount and, using Equation (4), the modified geomet- 

rical parameter Y ’ may be shown to be 

y* = (13) 

where (EI) s is the flexural rigidity of the sheathing, and Y and (EI)O are 

the geometrical paramet.er and static flexural rigidity, respectively, of the 

composite beam prior to the addition of the sheathing. Hence, with the 

determination of the sheathing flexural rigidity and using the values of 

geometrical parameter and static flexural rigidity previously developed for the 

beam, the decrease in geometrical parameter caused by the addition of the 

sheathing is readily evaluated. The modified static flexural rigidity of the new 

composite beam is given by (EI)o’ = (EI), + (EI)s. 

Examples of composite beams to which a sheathing may be added for 

the reasons given above are the bars shown in Figure 2.5 (a, b, c, d, f) and 

tubes shown in Figure 2.6(a, d). Since the addition of the sheathing reduces 
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the geometrical parameter of the composite beam, consideration should be 

given to the use of a thin sheathing made from a low-modulus material wnich 

performs its intended function without providing a significant increase in the 

static flexural rigidity of the beam. 

Formulation of Design Parameters 

By using either the generalized or appropriate simplified version of 

the equation for geometrical parameter previously presented, specific design 

relationships for the geometrical parameter Y of the viscoelastic shear- 

damped structural composites shown in Figures 2. 1 to 2. 8 can be developed 

in the following form: 

y= Yo (M, R, T, D, S, N) [Y/&i (14) 

where. YO is the value of the geometrical parameter for zero thickness of the 

viscoelastic damping layer and Y/Y0 is a geometrical parameter correction 

factor specifying the effect which the thickness of the viscoelastic damping 

layer Hv has on the value of the geometrical parameter. To keep the design 

equations for geometrical parameter as general as possible, the following 

dimensionless parameters are employed: 

M = El/E2 = ratio of modulii of elasticity 

R = H1/H2 = thickness ratio 

T = Hs/Hc = thickness ratio 

D = B/A = dimension ratio 

S = H/A = dimension ratio 

N = number of elastic elements 

where E represents modulus of elasticity, H represents thickness, and B 

and A (with no subscript) represent overall size dimensions. In some cases, 

A (with identifying subscript) is also employed to represent cross-section 

area; this distinction is made quite obvious for the various structural 

composite design cross-sections considered. Figures 2. 1 to 2. 8 define 
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the dimensional parameters for each specific structural composite design. 

Any consistent set of units may be used for these parameters and, for max- 

imum generalization, only dimensionless design graphs are developed for the 

geometrica 1 parameter. 

Effect of viscoelastic damping layer thickness. - For the structural 

composite designs which have geometrical parameters described by 

Equation (14), the geometrical parameter correction factor may be written 

Y/Y, = (l+ 2102 (15). 

where the viscoelastic thickness parameter V represents the ratio of the 

viscoelastic damping layer thickness Hv to a reference thickness. This 

equation is shown in the graph below, which indicates that the geometrical 

parameter is increased by a correction factor ranging from one to 1. 7 for 

i i i i I 

0.05 o.io o.i5 

VISCOELASTIC THICKNESS PARAMETER, V 
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values of the viscoelastic thickness parameter ranging from Cl to 0. 15. The 

viscoelastic thickness parameter is limited to small values in accordance 

with the assumption that the viscoelastic damping material layers incor- 

porated in the structural composite are thin compared to the thicknesses of 

the elastic elements of the structural composite. 

Increasing the thickness of the viscoelastic damping layer has its 

greatest effect on the geometrical parameter when it results in a significant 

increase in the distance between the neutral axes of the elastic elements of 

the structural composite. This is the case, for example, for the composite 

structural plates and beams shown in Figures 2. 1 to 2.4 and 2. 7. For the 

composite structural bars, tubes and dumbbell model having a fixed overall 

size shown in Figures 2.5, 2.6 and 2.8, however, an increase in the visco- 

elastic damping material thickness has a less significant effect and, in 

certa in ins ta nce s , would cause a decrease in the static flexural rigidity (El)0 

because of the resulting reduction of cross-section area of Some elastic 

elements. The bar design shown in Figure 2.5 (i) and the tube design shown 

in Figure 2. 6(e) are examples of this situation. 

For a number of practical cases, the reference thickness employed in 

the definition of the viscoelastic thickness parameter V can be defined 

solely in terms of thicknesses of elastic elements comprising the structural 

composite. In more complicated cases, the reference thickness definition 

may contain some of the thickness or dimension ratios previously defined in 

addition to the thicknesses of the elastic elements. For the composite struc- 
tural plates and shapes shown in Figures 2. 1 to 2.4 and 2. 7, the general 

form of the viscoelastic thickness parameter V is 

(16) 

where the thickness Hv of the viscoelastic damping layer is assumed 

constant throughout the composite structure, H1 and H2 are thicknesses 
of the elastic elements of the structural composites, and h is a factor which 

may be either purely numeric or a function of other dimensionless parameters. 
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With the exception of the unsymmetrical three-laminate plate designs 

and the plate designs consisting of N identical structural sheets, the 

factor X for the composite plate designs is unity; this includes the design 

configurations shown in Figures 2. 1 (a, c), 2.2 (a, b), 2. 3(a, c), and 

2.4(a, b). 

For the unsymmetrical three-laminate plate designs, it can be shown 

that the geometrical parameter correction factory/Y0 is greater than that 

indicated by Equation (15) for values of the thickness ratio Hi/Ha less than 

unity, where the viscoelastic thickness parameter V is defined by _ 

Equation (16) with A= 1. For values of the thickness ratio HI/HZ greater 

than unity, the correction factor Y/Y0 is less than that indicated by 

Equation (15). Finally, the correction factor Y/Y, is given exactly by 

Equation (15) when the thickness ratio Hi/Ha is equal to unity. Hence, 

the effect of the viscoelastic damping layer thickness on the value of the 

geometrical parameter of unsymmetrical three-laminate plate designs can be 

stated qualitatively as follows: 

Y/Y0 r (1+uo2 0% /H2 54 1.0) 
(17) 

Y/Y0 2 (1+2 lo2 @I1 /Hz 2 1.0) 

To obtain a quantitative evaluation of this effect, the geometrical parameter Y 

can be determined directly for specified values of the viscoelastic thickness 

parameter V ; however, the results cannot be expressed as a correction factor 

in the form indicated by Equation (14). 

For the plate designs comprised of a lamination of N identical 

structural sheets, as shown in Figure 2. l(b) and 2. 3(b), the viscoelastic- 

thickness parameter V is given by 

HV 
v= 2H (18) 

where H is the thickness of the structural sheets (solid or honeycomb) 

employed in the composite structural plate designs. 
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More complex forms of the viscoelastic thickness parameter V apply 

for the composite beam design configurations shown in Figure 2.7. The 

factor X for the composite angle, channel, T-section and I-section designs 

shown in Figure 2. 7 is given by 

Angle: 
3+s2 1 

x1 = 2-s; ha = s 

Channel: X = SD+ 2 (l-S2) 
S cD+2(1-S)] 

T-Section: h = 
SD+ (l-S2) 

SD+ (1-S) 3 

(19) 

(20) 

(21) 

I-Section: X = + (22) 

where the dimension ratios S and D are as previously defined. Two values 

of the factor X are given for the angle design: X1 applies for the neutral 

axis at 45 degrees to and intersecting the sides of the angle, whereas X2 

applies for the neutral axis at 45 degrees to the sides of the angle passing 

through the apex of the angle construction. For specific values of the dimen- 

sion ratios S and D for a given composite structural design configuration, 

the factor X may be calculated and the effect of the viscoelastic damping 

layer thickness evaluated by application of Equations (15) and (16). 

Equivalent modulus concept. - A simplification in the analysis and 

development of design data for structural composites involving honeycomb 

sheets, box-beam or I-beam constructions can be introduced by use of the 

concept of equivalent modulus. By equating the flexural rigidity of a solid 

rectangular sheet to that of a honeycomb sheet, box-beam, or I-beam construc- 

tion of equal thickness and width, an “equivalent” modulus of the solid sheet 

can be determined. 

For example, for a honeycomb sheet comprised of two skin members 

of thickness Hs bonded to a core of thickness Hc as shown in Figures 2.2 

and 2. 3, the equivalent modulus E of a solid structural sheet, which has a 
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(23) 

rectangular cross-section and a thickness H = 2Hs + Hc, is given by 

E 
EH = 

(2T+1)3 -1 
(2T+ 1)3 

where E 

T = H,,h: 

is the modulus of the honeycomb sheet skin material and 

is the ratio of the skin thickness to the core thickness of the 

honeycomb sheet. This equation, which is shown in the graph below, 

indicates that the modulus ratio is given approximately by E/EH M 6T for 

THICKNESS RATIO, HqH 
C 

values of the thickness ratio Hs/Hc < 0.04. It is significant that when 

Hs/Hc 2 0.5, the effective modulus E very nearly equals the modulus of 

the honeycomb skins EH. 

A similar analysis applied to box-beam and I-beam constructions 

of the type shown in Figure 2.4 results in the following relation for the 
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modulus E of a solid structural sheet having an equivalent bending stiffness 

E -= (2T+ 1)3 + b/B -1 

EB (2T+ l)= 
(24) 

where E B is the modulus of the box-beam material, T.= Hs/Hc is the ratio 

of the skin (or flange) thickness to the core (or web) thickness of the box- 

beam (or I-beam) construction, and b/B is the ratio of the total effective 

core (or web) width to the width of the beam. This equation, which is shown 

in the graph below, indicates that the modulus ratio E/EB approaches the 

THICKNESS RATIO, Hs/ 
Hc 

value b/B as the thickness ratio Hs/Hc approaches zero. For values of 

the thickness ratio H,/H, 2 0.5, the effective modulus E very nearly equals 

the modulus of the beam E,, especially for larger values of the width 

ratio b/B. When b/B = I, the modulus ratio E/EB approaches unity 

since the box- or I-beam essentially becomes a solid rectangular beam. 
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Finally, for the case of b/B = 0, the box-beam and I-beam constructions 

degenerate into an idealized honeycomb sheet and the relation for the 

modulus ratio E/EB reduces the relation for the modulus ratio E/EH for 

the honeycomb sheet. 

The graphs for the equivalent modulus ratios provide a rapid means 

of determining the bending stiffness of a honeycomb sheet and box-beam or 

I-beam constructions since the effective flexural rigidity is given simply by 

(EI) = EB(2Hs+Hc)3/12, where E and B are the equivalent modulus and 

the width of the structural member, respectively. 

While the equivalent modulus concept may be applied directly to 

determine the modulus of a solid rectangular cross-section sheet having the 

same thickness, width and bending stiffness as a honeycomb, box-beam, or 

I-beam construction, care is required with regard to its use in the develop- 

ment of mathematical expressions for geometrical parameter. Since the 

transfer flexural rigidity (EI)t of this type of construction is not reproduced 

by the “equivalent” solid sheet, this concept can only be employed for 

purposes of simplification of geometrical parameter analyses when the over- 

all geometry of the composite structure is such that the neutral axis of the 

structural member for which an equivalence is sought is identical for the 

uncoupled and coupled conditions. This requirement essentially stipulates 

that the transfer flexural rigidity of the honeycomb, box-beam or I-beam 

construction is zero and the transfer flexural rigidity of all other structural 

elements are unchanged by substitution of the “equivalent” solid structural 

sheet. Consequently, the equivalent modulus concept provides a simplifica- 

tion in the determination of the geometrical parameter of the symmetrical 

double-constrained honeycomb, box-beam, and I-beam structural composites 

shown in Figures 2. 2(b), 2.4(a) and 2.4(b), respectively. For these struc- 

tural composites, the structural member to be replaced by an equivalent solid 

sheet is oriented in a manner such that its neutral axis of flexure is located 

identically for the uncoupled and coupled conditions. 
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Geometrical Parameter Design Data 

The specific structural composites which have been evaluated for 

geometrical properties important in the design for high damping are shown 

in Figures 2. 1 to 2. 8. Equations and graphical presentations are developed 

for the geometrical parameter YB in terms of the modulus, thickness and 

dimension ratios previously defined. An indication is made with regard to 

the applicability of the geometrical parameter correction factor Y/Y0 for 

determining the value of the geometrical parameter Y. A wide variation in 

the values of the modulus and size parameters, keeping within the realm of 

practicality of design, is included in the design graphs to provide flexibility 

in the selection of cross-section configurations which have a satisfactory 

value of the geometrical parameter. Equations are provided for the static 

flexural rigidity (EI), and the structure weight per unit length w in terms of 

cross-section dimensional characteristics, modulus of elasticity E, and the 

weight density y (weight per unit volume). For designs involving two elastic 

elements, the mean length of the viscoelastic damping layer in the cross- 

section plane Bv and the distance between the neutral planes of the two 

elastic elements d are also provided. 

Laminated structural sheets. - Cross-section configurations and 

design equations for damped structural plates consisting of laminated solid 

structural sheets are presented in Figure 2. 11 (A). Included are designs 

comprised of two, three (symmetrical and unsymmetrical) and N identical 

solid structural sheets. The geometrical parameter Y0 for these damped 

plate designs is presented graphically in Figures 2. 11 (B)- (D) for parametric 

variations of the modulus ratio El /E2 and the thickness ratio Hi/Ha . 

Since the geometrical parameter correction factor stated by Equation (15) 

is not directly applicable to the unsymmetrical three solid sheet plate design, 

graphs of the geometrical parameter Y are presented in Figure 2. 11 (E) for 

values of the viscoelastic thickness parameter V equal to (a) 0. 05, (b) 0. 10, 

(c) 0.15 and (d) 0.20, where V is given by Equation (16) with >t equal to 

unity. 
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To evaluate the relative merits of the symmetrical and unsymmetrical 

three-elastic-element plate designs with regard to the value of geometrical 

parameter Yo, the ratio Ys/Yu is presented graphically in Figure 2. 11(F), 

where Y s and Yu are the geometrical parameters Y0 for the symmetrical 

and unsymmetrical designs, respectively. The symmetrical design has a 

larger geometrical parameter for modulus ratios El/E2 greater than unity, 

for all values of the thickness ratio HI/Ha. For modulus ratios less than 

unity, the unsymmetrical design has the larger geometrical parameter. Finally, 

the symmetrical and unsymmetrical designs have the same value of geomet- 

rical parameter for a modulus ratio of unity. 

Geometrical parameter design graphs are not presented for the plate 

design comprised of N identical solid sheets since the governing equation 

is simple enough to allow mental calculation. Very large values of the 

geometrical parameter Y0 are attained as the number of equal thickness and 

stiffness sheets is increased. 

The values of modulus and thickness ratios which maximize the 

geometrical parameter Y0 may be determined in concept by determining the 

conditions for which dYO/dR = 0. For the two solid sheet design, the thick- 
ness ratio at which the maximum geometrical parameter (YO)max = 3. 0 occurs 

is given by 

(HdHa)ymax = d- (25) 

For the three solid sheet designs, the conditions for maximization of geomet- 

rical parameter may be obtained numerically in lieu of the differential calculus 

technique which does not provide a convenient closed form solution. 

The results of a maximization analysis are shown in Figure 2. 11(G), 

where the thickness ratio for maximizing Y0 is shown at (a) and the 

value CYo)max is shown at (b) as a function of the modulus ratio. For 

modulus ratios greater than unity, the thickness ratio for maximum geometrical 

parameter is less than unity; conversely, for modulus ratios less than unity, 

the thickness ratio for maximum geometrical parameter is greater than unity. 

The thickness ratio for which the geometrical parameter is maximized is 
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different depending upon whether two or three laminates are employed; 

however, the same thickness ratio maximizes the geometrical parameter for 

the symmetrical and unsymmetrical ‘three laminate design. 

The curves presented in Figure 2. 11(G) indicate that very large values 

of the geometrical parameter can be attained with the three laminate design, 

especially for the symmetrical configuration. For modulus ratios greater 

than unity, the symmetrical configuration provides a higher maximum geomet- 

rical parameter whereas, for modulus ratios less than unity, the unsymmetrical 

configuration provides higher values of the maximum geometrical parameter. 

Constrained honeycomb sheets. - Cross-section configurations and 

design equations for damped structural plates consisting of constrained 

honeycomb structural sheets are presented in Figure 2. 12(A). Included are 

single-constrained and double-constrained (symmetrical and unsymmetrical) 

designs comprised of laminated honeycomb and solid structural sheets. The 

geometrical parameter Y0 is presented graphically in Figures 2. 12(B) and (D) 

for the single-constrained and unsymmetrical double-constrained honeycomb 

plate des,igns. Parametric variations of the thickness ratios Hs/Hc and 

H1/H2 are presented, with specific values of the modulus ratio E1/EH 

equal to (a) l/3, (b) 1. 0, (c) 3, and (d) 10; 

Graphs of the equivalent modulus ratio E”/EH and geometrical 

parameter Y0 are presented in Figure 2. 12(C) for the symmetrical double- 

constrained honeycomb design. Broad parametric variations of the modulus 

ratio El/E2 and thickness ratio Hi/Ha can be presented graphically in this 

case by use of the equivalent modulus concept for the central honeycomb 

structural element. Equation (23) or its graphical equivalent provides a means 

of determining the values of the equivalent modulus ratio Ee/EH in terms of 

the thickness ratio Hs/Hc. Using this information, the effective modulus 

ratio El /Es is calculated and- the graphical solution for the symmetrical 

three solid sheet design may be applied directly to determine the geometrical 

parameter in terms of the modulus ratio El/E8 and the thickness ratio H1/H2. 

This procedure can be carried out in its entirety by use of the graphical data 

presented in Figure 2. 12(C). 
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Laminated honeycomb sheets. - Cross-section configurations and 

design equations for damped structural plates consisting of laminated 

honeycomb structural sheets are presented in Figure 2. 13 (A). Included are 

designs comprised of two, three (symmetrical and unsymmetrical) and 

N identical honeycomb structural sheets. Determination of the geometrical 

parameter Y0 is considerably simplified when the thickness ratios Hsl/Hcl 

and Hsa/Hcz (or Hs/Hc for th e plate design comprised of N identical sheets) 

approach zero. In this case, the geometrical parameter approaches one-third 

of the value which would exist if the structural sheets were solid; hence, the 

geometrica 1 parameter Y0 can be determined by use of Figures 2. 11 (B)- (D) in 

terms of the modulus ratio E1/Ea and thickness ratio Hi/Ha. 

The geometrical parameter Y0 is presented graphically in 

Figures 2. 13(B)-(F) for parametric variations of the thickness ratios Hsl/Hcl 

and H.sz&z, with various specific values of the modulus ratio El/E2 and 

thickness ratio HI/HZ. Design graphs for values of the modulus ratio El/Es = 1 

and thickness ratio H1/H2 equal to (a) 1. 0, (b) 1.5, (c) 2 and (d) 4 are 

provided in Figure 2. 13(B) for the two honeycomb sheet design. For the three 

honeycomb sheet designs having values of the thickness ratio HI/Hz equal 

to (a) 0. 25, (b) 0. 5, (c) 1. 0 and (d) 2, the geometrical parameter Y0 is 

shown graphically in Figures 2.13(C) and (E) for the modulus ratio E1/Ea = 1, 

and Figures 2. 13(D) and (F) for the modulus ratio El/E2 = 3. 

A graph of the geometrical parameter Y0 is presented in Figure 2. 13 (G) 

for the damped structural plate comprised of N identical honeycomb sheets. 

As the number of identical honeycomb sheets is increased, the value of the 

geometrical parameter is increased. For low values of the thickness 

ratios Hs/Hc , the geometrical parameter is given approximately by 

yo x $ (N2-1); this approximation is applicable, for example, for Hs/HcC 0. 1 

when N= 2, Hs/Hc CO. 05 when N = 3, and Hs/Hc CO. 02 when N = 4. 

Box-beam and I-beam constructions. - Cross-section configurations, 

design equations, and graphs of the equivalent modulus ratio Ea/EB and 

geometrical parameter Y. for damped symmetrical double-constrained plates 

incorporating box-beam and I-beam constructions are presented in Figure 2.14. 

Broad parametric variations of the modulus ratio El/E2 and thickness 
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ratio Hi/Ha can be presented graphically in this case by use of the equiv- 

alent modulus concept for the central structural element. Equation (24) or 

its graphical equivalent provides a means of determining the equivalent value 

of the modulus ratio Ea/EB in terms of the thickness ratio H,/H,. Using 

this information, the effective modulus ratio El/E2 is calculated and the 

graphical solutions presented for solid sheet designs are applied directly to 

determine the geometrical parameter in terms of the modulus ratio El/E2 and 

the thickness ratio H1/HB. This procedure can be carried out in its entirety 

by use of the graphical data presented in Figure 2. 14. When the width 

ratio b/B becomes very small, the geometrical parameter becomes approx- 

imately equal to that for a double-constrained honeycomb sheet as shown 

graphically in Figure 2. 12(C). 

Structural bar designs. - Cross-section configurations and design 

equations for damped structural bars consisting of a multiplicity of longitu- 

dinal elastic elements arranged to produce various cross-section shapes are 

presented in Figure 2. 15(A). Included are designs for square and round 

cross-section bars, as well as bars having cross-sections intermediate to 

these shapes. The geometrical parameter Y. is presented graphically in 

Figures 2. 15 (B)-(L). 

Graphs of the geometrical parameter Y. are presented in 

Figure 2.15 (B)-(E) for composite structural bar designs comprised of a central 

elastic element in the shape of a cross and a symmetrical set of four elastic 

elements with square, quarter-round or triangular shapes. Data are presented 

for parametric variations of the modulus ratio El/E2 and dimension ratio B/A. 

These bar designs have orthogonally symmetric cross-sections; hence, the 

value of the geometrical parameter Y. given in the design graphs applies 

for any plane of flexural vibration. 

Graphs of the geometrical parameter Y. are presented in 

Figure 2. 15(F)-(H) for composite structural bar designs comprised of 

N identical insert members of rectangular cross-section placed in each of 

four rectangular grooves located on the faces of a square bar. Data are 

presented for parametric variations of the modulus ratio El/E2 and 

dimension ratio B/A. Values of the dimension ratio H/A equal to 0. 05 and 
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0. 1 are specified in Figures 2.15(F) and (G), respectively, and values of this 

ratio equal to 0. 15 and 0. 2 are specified in Figure 2. 15(H). Specific values 

of the number of elastic insert elements N range from one to infinity, with the 

final graph for each value of the specified dimensicn ratio H/A being 

applicable for the indicated range of N values. For the case of the dimension 

ratio H/A equal to 0.2, one design graph provides a good approximation for 

the geometrical parameter Y. for all values of the number of elastic insert 

elements N, as presented in Figure 2. 15(H); consequently, for this value. 

of H/A, there is no advantage to employ a large number of insert elements 

since the geometrical parameter provided by the insertion of a single 

rectangular member in each groove cannot be significantly increased. This 

composite structural bar design has an orthogonally symmetric cross-section; 

hence, the value of the geometrical parameter Y. given in the design graphs 

applies for any plane of flexural bending. 

Graphs of the geometrical parameter Y. are presented in 

Figures 2. 15 (I) and (J) for a composite structural bar design comprised of 

N thin solid sheets laminated to a central square bar element. Data are 

presented for parametric variations of the modulus ratio El/E, and dimen- 

sion ratio H/A, with the number of laminated solid sheets N equal to (a) 1, 

(b) 2, (c) 3 and (d) 6. Since the cross-section of this bar design is not 

orthogonally symmetric, the design graphs in Figures 2. 15 (I) and (J) are 

presented for the two principal planes of flexural bending. 

A graph of the modified geometrical parameter Y (Ac/Ai) is presented 

in Figure 2. 15 (K) for square and round composite structural bar designs 

comprised of a large number of elastic insert elements placed within square 

and round structural tubes. Data are presented for parametric variations of 

the modulus ratio El /Ea and the dimension ratio B/A. The geometrical 

parameter Y is given by the product of the modified geometrical parameter 

obtained from Figure 2. 15(K) and the ratio of the total area of inserts Ai to 

the area of the hollow cell AC, where AC = B2 for the square bar and 

AC = n B2/4 for the circular bar. This composite structural bar design has 

an orthogonally symmetric cross-section; hence, the value of the geometrical 

parameter Y obtained by use of the design graph applies for any plane of 
flexural vibration. 
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A graph of the geometrical parameter Y. is presented in Figure 2. 15 (L) 

for a round structural composite bar comprised of four quarter-round elastic 

insert elements placed within a round structural tube. Design data are 

presented for parametric variations of the modulus ratio El/Es and the 

dimension ratio B/A. Since this composite structural bar design has an 

orthogonally symmetric cross-section, the geometrical parameter Y. given 

by the design graph applies for any plane of flexural vibration. 

Structural tube designs. - Cross-section configurations and design 

equations for damped structural tubes consisting of a combination of solid 

structural tubes and longitudinal elastic constraining elements are presented 

in Figure 2. 16(A). Included are designs for square and round cross-section 

tubes, for which the geometrical parameter Y. are presented graphically in 

Figures 2. 16(B)-(M). 

Graphs of the geometrical parameter Y. are presented in 

Figure 2. 15 (B)-(E) for a composite structural tube design comprised of 

N identical rectangular strips placed on the four outer faces of a square 

tube. Data are presented for parametric variations of the modulus ratio El/E2 

and thickness ratio H1 /Ha. The number of rectangular strips N is equal 

to (a) 1, (b) 2, (c) 4, and (d) 10 -00 in the design graphs for specific values 

of the dimension ratio H,JA equal to 0.05, 0.1, 0.15 and 0.2 in 

Figures 2.16 (B), (C), (D) and (E), respectively. For each value of the 

dimension ratio H2/A considered, a single design graph suffices for values 

of N ranging from ten to infinity. Since this composite structural tube 

design has an orthogonally symmetric cross-section, the value of the 

geometrica 1 parameter Y. given in the design graphs applies for any plane 

of flexural bending. 

A graph of the geometrical parameter Y. is presented in Figure 2. 16(F) 

for a composite structural tube design comprised of four structural angles 

placed on the outside corners of a square tube. Data are presented for 

parametric variations of the modulus ratio El/E2 and thickness ratio H1/H2, 

with specific values of the dimension ratio Ha/A equal to (a) 0. 05, (b) 0.1, 

(c) 0. 15 and (d) 0.2. Since this composite structural tube design has an 

orthogonally symmetric cross-section, the value of the geometrical 
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parameter Y. given in the design graph applies for any plane of flexural 

bending. 

A graph of the geometrical parameter Y. is presented in Figure 2. 16 (G) 

for a composite structural tube design comprised of four structural angles 

placed on the outside corners of a square tube, with four rectangular sheets 

placed on the four faces formed by the angle members. Data are presented 
for parametric variations of the modulus ratio El/E2 and thickness 

ratio H1 /Ha , with specific values of the dimension ratio Ha/A equal to 

(a) 0. 05, (b) 0. 1, (c) 0. 15 and (d) 0.2. For this design, the structural 

angle and sheets laminated to the central tube element have the same 

thickness H1 and modulus El. Since this composite structural tube design 

has an orthogonally symmetric cross-section, the value of the geometrical 

parameter Y. given in the design graph applies for any plane of flexural 

bending. 

Graphs of the geometrical parameter Y. are presented in Figure 2. 16(H) 
and (I) for a composite structural tube design comprised of N identical tube 

segments placed around the outer circumference of a circular tube. Data are 

presented for parametric variations of the modulus ratio El/E2 and the 

thickness ratio Hi/Hz. The number of tube segments N is equal to (a) 3, 

(b) 4, (c) 6 and (d) infinity in the design graphs for specific values of the 

dimension ratio Ha/A equal to 0. 05 and 0.1 in Figures 2. 16(H) and (I), 

respectively. It can be shown that, for values of N greater than 2, the value 

of the geometrical parameter Y. g iven in the design graphs applies for any 

plane of flexural bending, even though there may not be orthogonal symmetry 

(e.g., N= 3). 

Graphs of the geometrical parameter YO are presented in 

Figure 2. 16(J)-(M) for a composite structural tube design comprised of 

N identical tube segments placed between two concentric circular tubes. 

Data are presented for parametric variations of the thickness ratios Ha/H2 

and H1/H2, with the modulus ratio E,/Ea = l.‘O. The number of tube 

segments N is equal to (a) 3, (b) 4, (c) 6 and (d) infinity in the design 

graphs. Values of modulus ratio El/E2 equal to 1.0 and dimension ratio H2/A 

equal to 0. 05 and 0. 1 are considered in Figures 2. 16(J) and (K), respectively. 
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Similarly, values of the modulus ratio El/Es equal to 3. 0 and dimension 

ratio Ha/A equal to 0. 05 and 0.1 are considered in Figures 2. 16(L) and (M), 

respectively. For values of N greater than 2, the value of the geometrical 

parameter Y. given in the design graphs applies for any plane of flexural 

bending. 

Structural shape beams. - Cross-section configurations and design 

equations for damped angle, channel, T-section and I-section beams, which 

consist of solid rectangular sheets laminated to the outside of conventional 

structural shape beams, are presented in Figure 2. 17(A). It should be noted 

that the value of the geometrical parameter is much less (and in some cases 

could become zero) when the rectangular sheets are laminated on the inside 

surface of the structural shape beams. For example, consider the channel 

and T-section beams. If the thickness of the rectangular sheets were such 

that their neutral axes coincided with those of the channel or T-sections, 

the transfer flexural rigidity would be zero and, in accordance with 

Equation (4), the geometrical parameter would be zero. Hence, only designs 

providing desirable values of the geometrical parameter are considered. 

Graphs of the geometrical parameter Y o are presented in Figure 2. 17(B)- 

(E) for the angle, channel, T-section and I-section beams, respectively. Data 

are presented for parametric variations of the modulus ratio El/E2 and thick- 

ness ratio H1/H2. 

Since the cross-section of the composite structural angle design is not 

orthogonally symmetric, the design graphs in Figure 2. 17 (B) present the 

geometrical parameter Ya for the two principal planes of flexural bending. 

Values of the dimension ratio Hz/A equal to 0. 1 and 0. 2 are specified for 

the design graphs and the value of the factor X is indicated which may be 

used with Equations (15) and (16) to evaluate the effect of the viscoelastic 

damping layer thickness on the geometrical parameter. 

Practical values of the dimension ratios B/A and Ha/A are specified 

in the design graphs for the channel, T-section and I-section beams. In 

each case, the value of the factor X is indicated which allows the effect 

of the viscoelastic damping layer thickness on the geometrical parameter 

to be evaluated by use of Equations (15) and (16).. The geometrical parameter 
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design graphs for the channel and T-sections which are presented in 

Figure 2. 17 (C) and (D), respectively, indicate that a general decrease in the 

geometrical parameter occurs for an increase in the dimension ratio B/A. 

This is a somewhat unexpected result since there is a general trend for the 

geometrical parameter to increase with increasing dimension ratio B/A and 
to approach the value of the geometrical parameter for solid plates as B/A 

approaches infinity. However, in the region of greatest interest (2 < B/A C 4 

for the channel and 1 < B/A < 2 for the T-section) the opposite is true. An 

alternate method of obtaining the geometrical parameter of the double- 

constrained I-section beam presented in Figure 2. 17(E) is to employ the 

previous analysis of this type of construction based on the use of the 

equivalent modulus concept, as presented graphically in Figure 2. 14. 

Dumbbell model. - A cross-section configuration, design equations 

and a graph of the geometrical parameter Y. for a damped dumbbell model 

is presented in Figure 2. 18. The cross-section areas Al and A2 may be of 

any shape and it is assumed that the distance H between the symmetrically 

located areas is substantially greater than the square root of the cross-sectior, 

areas. Data are presented for parametric variations of the modulus 

ratio El/E2 and the area ratio A1/A2. This design graph provides a first- 

order approximation of the geometrical parameter Y. of complex structural 

assemblies such as truss constructions. 

Geometrical Parameter Design Considerations 

From the point of view of producing structural composites with high 

damping, it is desirable to design structure cross-sections having high 

values of the geometrical parameter Y. The design data presented for the 

various viscoelastic shear-damped structural composites allow the selection 

of modulus and geometry to attain a desired value of the geometrical 

parameter. For a given selection of structural materials, the dimensional 

properties of the cross-section can frequently be selected to maximize the 

value of the geometrical parameter. 

A value of the geometrical parameter Y ranging from 0.5 to 5. 0 is 

generally required to design highly damped structures which satisfy other 
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performance requirements such as static stiffness, weight, stress, structure 

resonant frequency and size. The structure loss factor q may not be 

sufficiently high for values of the geometrical parameter less than 0. 5, 

whereas a substantial increase in values of the geometrical parameter 

greater than 5 may provide only a slight increase in the structure loss 

factor [Ref. 81. Each application must be evaluated on its own merits, 

how ever, since particular design and performance requirements may justify 

the selection of a value of geometrical parameter out of this range. 

The design graphs indicate that it may be advantageous, with regard 

to attaining a high value of the geometrical parameter Y. , to employ materials 

having different modulii of elasticity in the structural composite. This is the 

case, for example, for the constrained honeycomb sheets and the structural 

bar and tube designs considered. However, for designs such as the damped 

plate in the form of two laminated soIid sheets, the use of different materials 

for the two elastic elements does not provide any advantage with regard to the 

maximum obtainable value of the geometrical parameter YO ; however, it does 

provide flexibility in the selection of the thicknesses of the solid sheets. 

The choice of materials in the fabrication of a structural composite 

depends on many considerations other than structural damping. For example, 

protection from hostile environments, therma conduction, electrical 

conduction, radiation shielding, strength, weight, etc., all represent 

broader design implications which may suggest the use of a specific 

combination of structural materials. 

Certain structural composite designs involve a number of elastic 

elements N which generally should be made large to obtain high values of 

the geometrica 1 parameter. However, the rate of change of the geometrical 

parameter with N frequently decreases for higher numbers of elastic elements, 

and the design graphs can be employed to determine the most advantageous 

number of elastic elements from the point of view of structural performance 

and fabrication. 

The design data presented herein allows the evaluation of the 

geometrical parameter, static flexural rigidity, and structure weight for 

changes made in modulus, size and number of elastic elements comprising 
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the structural composite. Hence, by judicious variation of the modulus and 

geometry parameters, a compromise between all design and performance 

requirements can be a tta ined. 
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SECTION 3: DESIGN OF TWO-ELASTIC-ELEMENT STRUCTURAL COMPOSITES 

This section of the report presents the development of design 

procedures for two-elastic-element structural composites based on fundamen- 

tal equations previously developed for the loss factor and related parameters 

for viscoela stica lly damped beam structures. The assumptions employed in 

the derivation of the fundamental equations are reviewed and typical structural 

composite designs for which the theory applies are identified. Both a manual 

design procedure using graphical design data and an automated procedure 

employing digital computer techniques are developed. The implications of 

other design considerations such as temperature, static stiffness, weight 

and static load distribution are also discussed. An example of the use of 

these procedures is presented in Section 4 of this report. 

Fundamental Equations for Damping Parameters 

The structure loss factor ?J is defined as the ratio of the imaginary and 

real parts of the complex flexural rigidity (EI)* = (EI)(-in). For viscoc’astic 

shear-damped structural composites comprised of two elastic elements and an 

intervening viscoelastic damping layer, the complex flexural rigidity (EI)* is 

given by [ Ref. 5 ] : 

(EIjk= (EI)o [I+ -$ y] (26) 

where the complex shear parameter X* = X (l-i/3). Evaluation of the complex 
flexural rigidity for the uncoupled condition (X= 0) and the coupled 

condition (X=m) provides the fundamental relationship for geometrical 

parameter Y given by Equation (3). By expanding Equation (26) into a basic 

corn plex form, the following equation for the structure loss factor is 

obtained [ Ref. 5 I : 

77= 
,6XY 

l+X(Y+2)+ (l+fi2 )X2 (Y+ 1) 
(27) 
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where the loss factor fl of the viscoelastic damping material defined by 

Equation (2) is in general a function of frequency and temperature and the 

geometrica 1 parameter Y is defined generally by Equation (4) and more 

explicitly by Equation (6). 

The ratio d2/k from Equation (6) is independent of the viscoelastic 

damping layer thickness Hv and, therefore, is equal to d,“/‘Yo , where do 

and Y. are the distance between the neutral planes of the two elastic elements 

and the geometrical parameter, respectively, for Hv = 0. Consequently, the 

shear parameter X is given by [Ref. 5, 83 

x= 
G ‘Bv do2 

P~H&, @I), 
(28) 

where G’ is the storage modulus of the viscoelastic shear-damping material, 

BV 
is the mean length of the viscoelastic damping layer in the cross-section 

plane, @I). is the static flexural rigidity of the structural composite correspond- 

ing to the uncoupled condition (i.e. , (EI)o = El I1 +E212), and p is the wave 

number for flexural vibrations. The flexural vibration wave number p is 

given by 

p= 2 

where X is the wavelength of a flexural 

may be related to the circular frequency 

follows 

n/x (29) 

wave. Alternately, the wave number p 

w and the cyclic frequency f as 

p2= c9/*= 2nf II 
W 

g mr 
(30) 

where w is the weight per unit length of the composite structure, g is the 

gravitational acceleration constant, and (EI), is the effective flexural rigidity 

of the structure for the resonant mode of vibration being considered. 

The following are presentations of the basic assumptions made in the 

development of the fundamental theory for the damping of two-elastic-element 
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viscoelastic shear-damped structural composites undergoing flexural vibration 

and typical structural composite designs for which the theory applies. 

Basic assumptions of theory. - In the development of the fundamental 

equations for complex flexural rigidity, loss factor, and shear parameter, the 

following assumptions have been employed: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

The structural composite beam is comprised of two elastic elements 

of arbitrary modulus and cross-section area between which is 

constrained a viscoelastic shear-damping layer. 

The mode shape of the vibrating beam is sinusoidal. 

The effects imposed by boundary constraints are negligible. 

Shear and torsional distortions of the elastic elements are neglected. 

The cross-section dimensions of the elastic and viscoelastic elements 

rema in unchanged during vibration. 

Contact without slippage is maintained at all interfaces. 

Linear stress-strain relations apply for the viscoelastic and elastic 

materials employed in the structural composite. 

Axial inertial forces are negligible. 

The elastic elements have zero extensional and shear loss factors. 

The elastic elements are considerably stiffer in extension than the 

viscoelastic material. 

The viscoelastic layer is thin compared to the thickness of the 

elastic elements. 

The viscoelastic layer is of approximately constant thickness 

throughout the structural composite. 

Additional assumptions are delineated in the development of design equations 

and graphs for predicting the structure loss factor of two-elastic-element 

viscoelastic shear-damped structural composites. 

Typical structural composite desiqns. - Cross-section configurations 

of typical two-elastic-element structural composite designs are presented in 
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Figure 3. 1. Included are laminated (a) solid sheets, (b) honeycomb sheets, 

(c) solid and honeycomb sheets, (d) T-section, (e) channel section, and 

(f) angle section designs. The composite angle section design shown in 

Figure 3. l(f) actually is comprised of three elastic elements. However, for 

vibrations about the neutral axis which is at 45 degrees to and intersecting 

the sides of the angle, each of the two rectangular elastic elements of 

modulus El may be considered as representing one-half the stiffness of a 

single effective elastic element because of the physical orientation and 

identical flexural bending properties of the elements. Hence, the angle 

section design can be considered as a two-elastic-element structural 

corn pos ite. 

Specification of the moduli El and E2 of the two elastic elements 

and the cross-section dimensional characteristics of the two elastic elements 

allows relevant geometrical properties to be calculated by use of the design 

data previously presented for these cross-section configurations. Specifically, 

data in the form of design equations and graphs for the geometrical properties 

of two-elastic-element structural composites are presented in Section 2 of 

this report as follows: laminated solid sheets, Figure 2. 11 (A,B); laminated 

honeycomb sheets, Figure 2. 13 (A, B); single-constrained honeycomb sheet, 

Figure 2. 12 (A, B); and laminated T-section, channel and angle sections, 

Figure 2. 17(A-D). In the following discussion of design equations, graphs 

and procedures, it shall be assumed that the geometrical parameter Y, the 

static flexural rigidity (EI), , the weight per unit length w, the distance 

between the neutral planes of the two elastic elements d, and the mean 

length of the viscoelastic damping layer in the cross-section plane Bv have 

been determined by direct calculation or by use of the graphical design aids 

provided in Section 2 of the report. 

Development of Design Equations and Graphs 

If the wavelength of the flexural vibration wave X is known, the wave 

number p is simply determined by Equation (29). However, the structural 

designer is frequently interested in predicting the variation of the structure 

loss factor r) as a function of the frequency of vibration f = w/271 so that 
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the degree of damping at the various structural resonances can be established. 

Hence, Equation (30) is the appropriate equation to be employed Ito determine 

the wave number. This requires the evaluation of the effective flexural 

rigidity (EI), for which no precise definition exists. Based on analyses of 

the dynamic stiffness characteristics of a lumped parameter model representa- 

tion of viscoelastic shear-damped structural composites [Ref. 71 and 

subsequent experimental confirmation of the design procedures developed, 

there appears to be considerable justification for assuming that the effective 

flexural rigidity (EI), is the real part of the complex flexural rigidity (EI)*. 

Coupling parameter Z. - By use of Equation (26) and assuming that the 

effective flexural rigidity (EI), is the real part of the complex flexural 

rigidity (El)*, the following relationship for effective flexural rigidity is 

obtained 

(EI), = (I& (l+ ZY) 

where the coupling parameter Z given by 

z= (l+ m)+82 

(l+ VX)“+ B2 

(31) 

(32) 

is shown graphically in Figure 3.2 for parametric variations of the shear 

parameter X and the damping material loss factor t9. It should be recognized 

that, since the shear parameter X and the loss factor fl depend on frequency 

in general, the coupling parameter Z is also frequency dependent. 

As indicated by Equations (31) and (32) and Figure 3.2, the value of 

the coupling parameter Z defines the degree of dynamic coupling between 

the two-elastic elements of the structural composite. For values of the 

coupling parameter Z approaching zero (low values of X), the effective 

flexural rigidity (EI), essentially equals the static or uncoupled flexural 

rigidity (EI)o . For values of the coupling parameter Z approaching one (high 

values of X), the effective flexural rigidity (EI), essentially equals the 

coupled flexural rigidity (EI), = (EI),(Y+ 1). Values of the effective flexural 
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rigidity (EI), range between (EI)o and (El), for intermediate values of the 

shear parameter X, with higher values of the loss factor j3 causing the degree 

of dynamic coupling to be increased. 

Resonant frequency ratio f,/f,. - Assuming that the resonant fre- 

quencies of the composite structural beam or plate are the same as a solid 

beam or plate having the same static loading and a flexural rigidity equal to 

@Or , the standard natural frequency equations available in the technical lit- 

erature @ef. 9, 101 can be employed for resonant frequency prediction purposes 

with the value of (EI), given by Equation (31). It is convenient to employ the 

uncoupled resonant frequency fo, which is determined by the beam or plate 

natural frequency equation in terms of the static flexural rigidity (EI), , as a 

reference frequency for purposes of developing a dimensionless resonant 

frequency ratio. For flexural vibrations of beams and plates, the natural 

frequency varies as the square root of the flexural rigidity, where the constant 

of proportionality is a function of the mode of vibration, size, and static 

loading conditions. Consequently, for a given mode of vibration with the 

assumption that the same constant of proportionality applies for solid and 

damped beams.and plates having comparable size, boundary, and static 

loading conditions, the resonant frequency ratio fr/fo may be written 

fr 
fo= 

Using Equation (31), the resonant frequency ratio is given by 

f 

f = d-- 
l+ZY 

(33) 

(34) 

which is shown graphically in Figure 3. 3 for parametric variations of the 

geometrical parameter Y and the coupling parameter Z. Since the coupling 

parameter Z is frequency dependent and solutions being developed for 

structure loss factor are applicable only for resonant conditions, the value of 

the coupling parameter Z is a function of the resonant frequency fr; 
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consequently, the determination of the resonant frequency ratio by use of 

Equation (34) requires an iterative process. 

Referring to Equation (34) and Figure 3. 3, the coupling parameter Z 

determines (for a specified value of geometrical parameter Y) the ratio of the 

resonant frequency f, to the uncoupled natural frequency f. for a given mode 

of vibration. For low values of Z and all values of Y, there is little dynamic 

coupling and the resonant frequency fr is essentially the uncoupled natural 

frequency fo. For values of Z approaching one, the resonant frequency fr 

approaches a value @i f, for all values of Y. Defining the coupled 

natural frequency f, as follows 

f, = 4 Yi.1 f. 

the geometrical parameter Y can be written 

ful 2 
Y= f-1 ( ) 0 

(35) 

(36) 

which represents an additional alternate form of the relationship for geometrical 

parameter given by Equation (4). It is concluded that, for each flexural mode 

of vibration, the appropriate uncoupl& natural frequency f. and coupled 

natural frequency fco represent lower and upper bounds on the structural 

composite resonant frequency fr . 

Shear parameter X. - By substituting Equations (30), (31), and (34) 

into Equation (28), the following form of the equation for the shear parameter X 

is developed: 

(37) 

where the shear parameter coefficient C given by 

is independent of frequency and readily evaluated for a specified structural 

composite cross-section design configuration by use of the design data 

for geometrical properties presented in Section 2 of the report. 
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The shear parameter X is a complicated function of frequency. In 

addition to its direct dependence on the reciprocal of frequency, there is an 

indirect dependence on frequency since the viscoelastic material storage 

modulus G’ is generally a function of frequency, and determination of the 

resonant frequency ratio f / f. requires an iterative process with frequency 

as the iteration variable. 

Generalized shear parameter equation. - Since the structure loss 

factor rl and the resonant frequency ratio f / f. are mathematically 

continuous functions of frequency through their dependence on the shear 

parameter X and the viscoelastic damping material loss factor fl, it is 

desirable to combine the previously defined frequency-dependent parameters 

to arrive at an equation for shear parameter which does not require an 

iteration process for its solution. By substitution of Equations (32) and (34) 

into Equation (37), the following fourth-order equation with the shear parameter X 

as the variable is obtained: 

(1+P2)X4+2X3+ 1-c [ 2(gJcy+ 1) (l+ P”)] x~Q+j7y+2)x-(+-~ = 0 (39) 

Solution of this equation for the single positive real root provides a value of 

the shear parameter for each value of frequency selected. Obviously, it is 

necessary that dynamic elastic data for the viscoelastic damping material be 

available so that the appropriate values of the storage modulus G’ and the 

loss factor fi may be inserted in the generalized shear parameter equation. 

Optimum shear parameter X0 . - Inspection of the relationship for 

structure loss factor q given by Equation (27) reveals that an optimization 

of design parameters is required to maximize the degree of structural damping. 

For values of the shear parameter X equal to zero or infinity, the structure 

loss factor 7j is zero. For intermediate values of X, the structure loss 

factor r) is finite and achieves a maximum value when a specific relationship 

exists between the shear parameter X, the toss factor fi , and the geometrical 

parameter Y. Based on the procedure of establishing the geometrical 

parameter Y and selecting a viscoelastic damping material having specified 

storage modulus G’ and loss factor fi characteristics, the value of the 
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optimum shear parameter X 
oP 

may be determined by evaluating dq/dX = 0 to 

obtain [Ref. 63 

x = 
OP &Gm (40) 

which is shown graphically in Figure 3.4 for parametric variations of the 

geometrical parameter Y and viscoelastic material loss factor 8. The value 

of the optimum shear parameter varies between zero and one. For the most 

common designs having values of the geometrical parameter Y between 0.5 

and 5, the value of the optimum shear parameter ranges from 0.2 to 0. 8. 

Maximum structure loss factor T,,, The value of the maximum . 
structure loss factor qmax which results when the shear parameter achieves 

its optimum value is determined by substitution of the relation for X 
oP 

given 

by Equation (40) into the general structure loss factor relationship given by 

Equation (27) to obtain [ Ref. 6 ] 

r) 
tW 

max = Y+2+2dm 
(41) 

which is shown graphically in Figure 3.5 for parametric variations of the 

geometrical parameter Y and the viscoelastic material loss factor /3 . This 

design graph clearly demonstrates the desirability of selecting a viscoelastic 

damping material having a relatively large loss factor /3 over the frequency 

and temperature ranges of interest. The curve for B=cX, is an upper-bound 

curve for the maximum structure loss factor based on the use of a pure viscous 

shear-damping mechanism. 

Loss factor ratio q/Q max . - The structure loss factor for non- 

optimum damping conditions can be evaluated in terms of the loss factor 

ratio q /qmax obtained by dividing Equation (27) by Equation (41) and 

employing the definition of the optimum shear parameter X op given by 
Equation (40), to obtain 

d77,,, = [ 
2+ (Y+2)Xo PI ( x/XoJ 

l+ (Y+2)X 
[ op] tXfioJ+ (x/xoJz 

(42) 
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which is shown graphically in Figure 3. 6 for parametric variations of the shear 

parameter ratio (X/X 
oP 

and the parameter (Y+2)X 
op’ 

Consequently, for a 

value of the shear parameter X other than optimum, Equation (42) or 

Figure 3. 6 can be employed to determine the fraction of maximum loss factor 

which will be obtained at each frequency for which the value of X has been 

determined. This design graph indicates that, for practical values of the 

geometrical parameter Y and optimum shear parameter X 
oP 

, the structure 

loss factor 7) is within 15 per cent of the maximum structure loss factor flmax 

when the shear parameter is one-half or twice its optimum value. Even when 

the shear parameter is less than four times and greater than one-fourth its 

optimum value, the structure loss factor q is greater than one-half its 

maximum value. The noncritical nature of the shear parameter optimization 

is of considerable practical significance because of the flexibility it 

introduces into the design process with regard to eliminating the necessity of 

exactness in designing for optimum conditions. 

Optimum frequency parameter a0 . - When the structure loss factor 77 

is displayed graphically as a function of frequency on log-log coordinates, the 

curve is approximately symmetrical about the frequency at which the loss 
factor is a maximum. In certain cases, it may be desirable to optimize the 
design of a structural composite at the logarithmic midpoint of the frequency 

range of interest. For the optimum value of the shear parameter, the resonant 

frequency ratio fr /f. defined by Equation (34) becomes 

(43) 

where the optimum coupling parameter Z 
oP 

is given by Equation (32) with X 
replaced by X 

op’ 
From Equations (37) and (43), the optimum structure 

resonant frequency f 
oP 

is given by 

f 
oP 

= CG’Qop (44) 
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where the optimum frequency parameter 61 defined as 

n ~-ix&T 
= 

oP X 
oP 

(45) 

is shown graphically in Figure 3. 7 for parametric variations of the 

geometrical parameter Y and the viscoelastic material loss factor fi. Since 

the viscoelastic material storage modulus G’ and the optimum frequency 

parameter 52 
oP 

are both frequency dependent, determination of the optimum 

resonant frequency through an iteration process using Equation (44) is 

considerably aided by the graphical presentation of 51 
oP 

in Figure 3. 7. 

The thickness of the viscoelastic damping layer Hv required for 

the structure loss factor q to achieve a maximum value may be determined 

from Equations (38) and (44) as follows 

c ) H v op = co (?-jOP@OP) (46 

( ) G’ where the ratio f op is determined at the frequency f 
oP ’ 

the optimum 

frequency parameter sop is given by Equation (45) and Figure 3. 7, and the 

damping layer thickness coefficient Co is given by 

d-6 Bvdo2 
co= 277 YoJLqET& (47) 

which is equal to the product of the viscoelastic damping layer thickness H 
V 

and the shear parameter coefficient C defined by Equation (38). 

Ma nua 1 Design Procedure 

A manual design procedure for the prediction of the loss factor of two- 

elastic-element viscoelastic shear-damped structural composites may be 

formulated based on the use of the equations and graphs for design parameters 

previously presented. Of particular interest to structural design engineers 

is the variation of the structure loss factor q with frequency. This information 

provides a rapid means of establishing the degree of damping for the various 
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structural resonances of interest. The following procedure is based on the 

assumption that a particular viscoelastic material is employed for which the 

ratio (G ‘/f) and the loss factor j? are known as a function of frequency for 

the temperature of interest: 

(1) For the cross-section and structural material properties of the 

structural composite, determine the value of the geometrical parameter Y, 

the static flexural rigidity (EI)o , the weight per unit length w, the distance 

between the two neutral planes d, and the length of viscoelastic damping 

layer B v in the cross-section plane. The design equations and graphs 

presented in Section 2 of this report can be used for this purpose. 

(2) Calculate the value of the shear parameter coefficient C 

expressed by Equation (38). 

(3) From data for the dynamic elastic characteristics of the visco- 

elastic damping material, determine the values of the ratio (G’/f) and the 

loss factor @ for a number of frequencies which span the frequency range of 

interest. 

(4) Calculate the resonant frequency ratio fr/fo and the shear 
parameter X for each frequency selected. A different value of fr/fo will 
exist in general for each frequency selected since the dynamic coupling 

between the two elastic elements comprising the structural composite (as 

determined by the coupling parameter Z) is a function of frequency. As 

an initial estimate, assume Z= 0 and, therefore, fr/fo= 1; hence, from 

Equation (37), the initial estimate of the shear parameter X for each frequency 

selected for analysis is X0 = C (G//f). By entering Figure 3.2 with this value 

of X and using the appropriate value of B for each frequency, a revised 

estimate of the value of the coupling parameter Z = Z1 is obtained. With 

this revised value of Z and the value of the geometrical parameter Y 

previously calculated, Figure 3. 3 is used to determine the resonant frequency 

ratio (fr/fo)l . This value of the resonant frequency ratio is used to 

calculate the first frequency-dependent estimate of the shear parameter 

X1 = C (G ‘/f) (fr ho) 1. This new value of the shear parameter X is used to 

obtain a revised estimate of the coupling parameter Zs and resonant 

frequency ratio (fr /fo) 2 to provide a second estimate of the shear parameter X2. 
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This iteration process is repeated until the value of the shear parameter X so 

determined does not change with a new iteration cycle to within the desired 

degree of accuracy. In general, three iterations should suffice in determining 

the value of the shear parameter X at each frequency selected. To determine 

the uncoupled natural frequency f. corresponding to each frequency selected, 

divide each frequency by its corresponding frequency ratio fr/fo. 

(5) Using the value of the geometrical parameter Y and the values of 

the shear parameter X and the loss factor B for each frequency selected for 

analysis, the structure loss factor q is calculated by use of Equation (27). 

Alternately, the structure loss factor ri can be determined with the aid of the 

design graphs presented in Figures 3.4-3. 6. Using Figure 3.4, the optimum 

shear parameter X is determined for the value of /? which applies for each 

frequency; hence, %e value of the shear parameter ratio X/X can be 
oP 

tabulated. Figure 3.5 is employed to obtain the maximum value of the struc- 

ture loss factor rimax which would occur if X= X 
op’ 

For each value of the 

ratio X/Xop previously determined, Figure 3. 6 is used to obtain the value of 

the loss factor ratio Q/Q,,, which, in turn, is multiplied by qrnax to obtain 

the value of the structure loss factor Q at each frequency selected for analysis. 

(6) The frequency at which the maximum structure loss factor given by 

Figure 3.5 will occur can be calculated by determining the value of the optimum 

frequency parameter fiop from Figure 3. 7. This determines the value of the 

ra’tio (G ‘/f)op = l/Cckp which is located on the graph of (G ‘/f) versus fre- 

quency for the viscoelastic material being employed to provide the value of the 

optimum resonant frequency f 
op’ 

This procedure may require an iteration 

process since, in general, the loss factor B is dependent upon frequency. 

For the particular structural composite design being evaluated, the optimum 

resonant frequency f 
oP 

may be far removed from the frequency range of 

interest and, consequently, would be of academic interest only, as it adds 

little to the understanding of the damping performance of the structural 

corn po s ite . 

This manual design procedure will result in a tabulation of values of structure 

loss factor ?J and uncoupled natural frequencies f. for each frequency used 

in the iteration process. Since q and f. are mathematically continuous 
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functions of frequency, curves can be passed through the discrete calculated 

data points to obtain continuous functions of frequency f = fr versus the 

uncoupled natural frequency fo, and structure loss factor 77 versus 

frequency f = fr. 

It may be desired to obtain the maximum value of structure loss 

factor rjmax at a specific frequency. The optimum design procedure for this 

requirement is as follows: 

(1) For the specified frequency f = fop, determine the values of the 

viscoelastic material storage modulus G’ and loss factor @. 

(2) With this value of fi and an initial assumption that Y = Y. , 

Figure 3. 7 is used to determine the initial estimate of the optimum frequency 

parameter 52 
op’ 

(3) Calculate the value of the damping layer thickness coefficient Co 

using Equation (47). 

(4) Using the values of CO, G’ and GOP determined, calculate the 

initial estimate of the optimum damping layer thickness (Hv)op using 

Equation (46). 

(5) For greater accuracy in determining (Hv)op , the initial estimate 

of its value can be used to determine a more accurate estimate of the geomet- 

rical parameter Y by use of Equations (14) and (15). This new value of Y 

is then used to recalculate the value of the optimum frequency parameter Sz 
oP 

and the optimum damping layer thickness (Hv)op. Generally, one iteration 

is sufficient because of the weak dependence of the geometrical parameter on 

the viscoelastic damping layer thickness. 

(6) Using the value of the optimum viscoelastic damping layer 

thickness (Hv)op determined, the value of the shear parameter coefficient 

C= Co/H v is calculated and a prediction of the resonant frequency versus 

the uncoupled natural frequency and the structure loss factor versus the 

resonant frequency is made following the general procedure previously outlined. 

Use of the optimum design procedure allows maximum damping to be attained 

in the region of a specific structural resonance at which excessive vibration 
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excitation is anticipated and a very high degree of vibration reduction is 

required. However, it is possible that the value of (Hv)op for a particular 

structural composite design is impractical from a fabrication point of view or 

does not satisfy the analytical requirement that Hv be small compared to the 

thickness of the elastic elements comprising the structural composite. This 

may preclude design optimization at the desired frequency; however, determina- 

tion of (Hv)op provides an indication of how close a practical non-optimum 

design can be to the optimum design. Therefore, within the practical limita- 

tions of fabrication and performance prediction capabilities, the possibility 

exists to tailor viscoelastic shear-damped structural composite designs to 

maximize damping at particularly troublesome frequencies. 

Automa ted Design Procedure 

The necessity for using a ma nua 1 iteration process to predict the 

structure loss factor versus frequency characteristics of two-elastic-element 

viscoelastic shear-damped structural composites can be eliminated by 

programming the generalized shear parameter relation given by Equation (39) on 

a digital computer to determine the single positive real root of the equation for 

each frequency selected, which gives the values of the shear parameter X 

required. Alternately, the manual design procedure can be programmed, which 

involves using Equations (32), (34) and (37) in an automated iteration process 

to determine the shear parameter X for each frequency selected. The second 

method has been found to be the more rapid one. The value of the shear 

parameter coefficieilt C is determined by use of Equation (38) and, for each 

frequency f specified, the values of the storage modulus G’ and loss 

factor fl are obtained from the dynamic elastic data for the viscoelastic 

damping material employed. The values of shear parameter X determined by 

one of the methods described above for each frequency may be stored in the 

computer for subsequent insertion into the relation for structure loss factor q 

given by Equation (27). Also, the values of the shear parameter X, along with 

values of C, (G//f), and the frequency f = fr, can be inserted into Equation (37) 

to o,btain values of the uncoupled natural frequency f, corresponding to each 

frequency. 
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A curve passed through the discrete data points provides continuous 

functions of frequency f = fr versus the uncoupled natural frequency fo, and 

structure loss factor rj versus frequency f = f,. Since inaccuracies associated 

with graphical solutions and approximations resulting from iteration processes 

are avoided, the automated design procedure provides a more accurate 

prediction of the damping and frequency characteristics than the manual 

design procedure previously outlined. Perhaps more important is the fact 

that the automated design procedure provides a more rapid means of calculating 

the damping and frequency characteristics. 

In a similar manner, a digital program can be written to perform the 

iteration required (as outlined in the manual design procedure) to determine 

the optimum viscoelastic damping layer thickness (Hv)op required to obtain 

the maximum value of structure loss factor q,,, at a specific frequency. 

With each cycle of iteration, a more accurate estimate of the geometrical 

parameter Y is obtained which provides greater accuracy in the prediction 

of &oop. The iteration process can be continued until values of (Hv)op are 

determined to within a specified degree of accuracy. Having determined the 

value of (Hv)op, the automated design procedure previously described may be 

employed to predict the structure loss factor versus frequency and uncoupled 

natural frequency characteristics. 

Temperature Effects 

The effect that temperature has on the viscoelastic damping material 

loss factor @ and the storage modulus G’ is much the same as that of 

frequency except that increasing temperature corresponds to decreasing 

frequency and decreasing temperature corresponds to increasing frequency. 

For very high environmenta 1 temperatures, the damping material operates in 

its “rubbery” region, and since little energy is dissipated, the structure loss 

factor is small. For very low environmental temperatures, the damping 

material operates in its “glassy” region, and again since little energy is 

dissipated, the structure loss factor is small. In the design procedures 

previously outlined, the temperature was considered constant. To cover a 

temperature range of interest, loss factor versus frequency curves can be 
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made for various temperatures throughout the temperature range of interest. 

Of course, it is also possible to construct loss factor versus temperature 

curves for various frequencies of interest. These curves will have shapes 

similar to the loss factor versus frequency curves and, in fact, the frequency 

and temperature dependance of the viscoelastic properties of high polymer 

damping materials are interrelated by physical laws [Ref. 11, 123. 

Other Design Considerations 

By applying the viscoela stic damping techniques described, structural 

composites having large loss factors can be constructed. However, there are 

other design considerations that are frequently as important as the energy 

dissipation capability of the structure. The following are discussions of 

the static stiffness, weight and static load distribution characteristics of 

viscoelastic shear-damped structural composites. 

Static stiffness.- When compared on the basis of equal weight, the 

static stiffness of a viscoelastic shear damped structural composite is less 

than that of a conventional structural member. Consequently, if s conventional 

structural member having a relatively low loss factor is to be replaced by a 

viscoelastic shear-damped structural composite of equal weight, a reduction 

in static stiffness of the structural member can be expected. However, due 

to the coupling between the individual elastic elements of the structural 

composite, as determined by the coupling parameter Z, the dynamic stiffness 

of the structural composite will always be greater than its static stiffness. 

The variation of the static stiffness K0 of a viscoelastic shear-damped 

structural composite with the value of the geometrical parameter YO is shown 

graphically in Figure 3. 8, and is given by [Ref. 83 

Ko 1 -- -= yo+1 
Kc0 

(48) 

where K, is the stiffness of the structure when the individual elastic elements 

of the structural composite are completely coupled. It is assumed that the 
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viscoelastic damping material is soft compared to the stiffness of the struc- 

tural materials employed in the structural composite and, therefore, the static 

stiffness of the structure is determined by the static flexural rigidity (EI), . 

Since the stiffness K, represents the stiffness of the structural member 

prior to adapting its cross-section to accommodate a viscoelastic shear- 

damping mechanism, Figure 3. 8 provides a comparison between the static 

stiffness properties of conventional and viscoelastic shear-damped structural 

members having the same weight. 

A substantial decrease in the static stiffness of the structure results 

even for relatively low values of the geometrical parameter YO. The static 

stiffness of the viscoelastic shear-damped structural composite is one-half 

that of the equal-weight conventional structural member when the geometrical 

parameter Y. = 1. For values of the geometrical parameter Y. = 2 and 

Y. = 3, the static stiffness is one-third and one-fourth that of the conventional 

structural member, respectively. The geometrical parameter Y should have 

a high value to obtain a large structure loss factor q and a low value to 

maintain a relatively high static stiffness KO for a specified weight of 

structure; therefore, selection of the value of the geometrical parameter should 

be based on the relative importance of damping and static stiffness as design 

requirements. 

Weight. - When compared on the basis of equal static stiffness, the 

weight of a viscoelastic shear-damped structural composite is greater than 

that of a conventional structural member. Consequently, if a conventional 

structural member is to be replaced by a viscoelastic shear-damped structural 

composite of equal static stiffness, an increase in weight can be expected. 

In general, there is no direct relationship between weight and the geomet- 

rical parameter Y. However, for a composite structural beam or plate 

comprised of a lamination of two solid sheets of the same material, the 

following relation can be developed 

EL 3y+l 
wS 

d-- 0 (49) 
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where W d is the weight of a viscoelastic shear-damped structural composite 

and Ws is the weight of a solid plate of the same material having a stiffness 

equal to the static stiffness of the damped plate. This relation is shown 

graphically in Figure 3. 9. 

For a value of the geometrical parameter Y. = 1, there is a 26 per cent 

increase in weight. The rate of increase in weight drops off as Y. increases 

so that for Y,= 3 (sandwich beams), the weight increase is 59 per cent and 

does not become 100 per cent unti.1 a value of YO = 7 is reached. Here again, 

the geometrical parameter Y should have a high value to obtain a large 

structure loss factor r) and a low value to maintain a relatively light structure 

weight Wd for a specified static stiffness. Consequently, structure weight, 

stiffness and damping must be considered as joint design criteria. 

Static load distribution. -The static load distribution specifies the 

fraction of the total statically applied load which is carried by each of the 

elastic structural elements comprising the structural composite and, therefore, 

is useful in performing stress analyses for static loading. Each elastic 

element in the viscoelastic shear-damped structural composite undergoes 

the same transverse deflection under bending; therefore, the load carried by 

each elastic element is in proportion to its flexural rigidity, as follows 

Pi EiIi 

-= (EI), P (50) 

where Pi is the load carried by an elastic element, EiIi is the flexural 

rigidity of that elastic element, P is the total applied static load, and 

@I), is the static flexural rigidity of the structural composite. For example, 

the relations for static load distribution for a composite structural beam or plate 

comprised of a lamination of two solid sheets of arbitrary material given by 

‘1 _ MR3 . p2- 1 -- 
P MR3+1 ’ ’ MR3+ 1 

(51) 

are presented graphically in Figure 3. 10 for parametric variations of the 

modulus ratio M = El/Es and the thickness ratio R= HI/Ha. 
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SECTION 4: EXPERIMENTAL VERIFICATION OF DESIGN 

PROCEDURE FOR TWO-ELASTIC-ELEMENT STRUCTURAL COMPOSITES 

This section of the report presents a comparison of the theoretical 

predictions and experimental measurements of the structure loss factor of 

two-elastic-element viscoelastic shear-damped structural composite beams. 

Cross-sections of the experimental structural specimens, which included 

laminated beams comprised of solid sheets, solid and honeycomb sheets, 

honeycomb sheets, and channel sections, are presented in Figure 4.1. The 

structural composites were fabricated from various combinations of structural 

materials including aluminum, steel, and fibre-glass. The thickness of the 

viscoelastic damping layer H v was maintained reasonably constant during 

the experiments which were performed at temperatures ranging between 7S” 

and 90’F. 

The following are discussions of the prediction and measurement 

techniques for the structure loss factor, followed by a comparison of the 

theoretical and experimental values for beam specimens having designs 

indicated in Figure 4. 1. 

Design Procedure Application Example 

The design procedures presented in Section 3 of this report have been 

used to predict the loss factor versus frequency characteristics of 27 different 

beam specimens. As an example of the application of the manual and 

automated design procedure, the numerical details of one of the beam designs 

will be delineated. 

Consider a structural composite cross-section comprised of two solid 

rectangular sheets laminated with a thin layer of viscoelastic damping material, 

as shown in Figure 4. l(a). The modulus, weight density, and dimension 

characteristics are as follows: 

(A) El = ~~ = 10. 3 x lo6 psi; Yl = y2= 0.098 lb./in.3 

(B) Hl= 0.0628 in. ; H2 = 0.0629 in. 
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(C) Hv = 0.0055 in. 

(D) B = 3.0 in. 

From these characteristics, the following modulus and dimension ratios are 

calculated: 

(A) M=E1/E2= 1.0 

(B) R= HI/HZ ml.0 _ 

(C) V= HV/(H1 fHa) = 0.0435 

The following represents the calculations performed in accordance with the 

various steps in the manual design procedure outlined in Section 3 of the 

report: 

(1) Using the modulus and dimension data determined and the design 

information presented in Figures 2. 11 (A) and (B), the following geometrical 

properties are calculated: 

(A) Yo= 3.0;Y/Yo= l.l8;Y= 3.54 

(B) (EI).= 1,287.S lb.-in.2 

(a w = 0.037 lb./in. 

(D) d = 0.068 in.; do = 0.0625 in. 

(E) Bv = 3. 0 in. 

(2) The value of the shear parameter coefficient C is calculated 

using Equation (38) to obtain C = 0. 327. 

(3) The value of the ratio (G ‘/f) and loss factor 6 for a number of 

frequencies which span the frequency range of interest (10 to 1000 Hz) and 

for the temperature of interest are determined from a graph of the dynamic 

elastic characteristics of the viscoelastic material, such as that presented 

in Figure 4. 2 for the viscoelastic damping material employed in the structural 

composite (3M No. 466 adhesive transfer tape). The data for the viscoelastic 

shear damping material presented in Figure 4.2 indicates that the loss factor /l 

has a reasonably constant value over the frequency range of interest, whereas 

the G’ and G ‘/f characteristics vary as a power function of frequency. 

Temperature variations in the neighborhood of room temperature have a minor 
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effect on the value of the loss factor and a substantial effect on the G and 

G ‘/f characteristics. This graph clearly demonstrates the significant effect 

which temperature may have on the dynamic elastic characteristics of visco- 

elastic damping materials and consequently on the loss factor characteristics 

of a structural composite incorporating the material in a shear-damping 
mechanism. For the discrete frequencies selected for analysis, which are 

indicated in the design example data chart presented in Figure 4. 3, and a 

specified temperature of 75OF, a relatively constant value of B = 1.4 and the 

values of G ‘/f indicated in Figure 4.3, are obtained from Figure 4.2. 

(4) The resonant frequency ratio f/f0 and the shear parameter X 

for each discrete frequency is determined by an iteration process using 

Figures 3.2 and 3.3. As an initial estimate for each frequency, choose the 

values Z= 0 and hence, f/f0 = 1. For example, for f = 10 Hz, 

X0= C (G’/f) = 1. 52. Enter Figure 3. 2 with /3= 1.4 and X= 1.52 to obtain 

a value Z1 = 0.77. Enter Figure 3.3 with Z = 0. 77 and Y = 3.54 to obtain 

a revised estimate of the resonant frequency ratio (fr/fo)l = 1. 95; this 

value is used in Equation (37) to calculate X1 = 2. 96. With this new value 

of the shear parameter, values of Za = 0. 88 and (fr/fo)2 = 2. 03 are obtained 

from Figures 3.2 and 3. 3, respectively, which give a value X3 = 3.08 using 

Equation (37). An additional iteration cycle results in Z3 = 0. 88 indicating 

that further iterations are not required for the degree of accuracy associated 

with reading the design graphs. Hence, values of fr/fo = 2.03 and X = 3.08 

are inserted in the chart of Figure 4. 3 for a frequency of 10 Hz. Since the 

discrete frequency f = 10 Hz actually represents a possible resonant fre- 

quency of the structural composite beam, the value of the uncoupled natural 

frequency is obtained by dividing the selected frequency f = fr by the 

resonant frequency ratio fr/fo to obtain a value of f. = 4. 93 Hz. 

(5) For values of /3 = 1.4 and Y = 3.54, Figures 3.4 and 3. 5 indicate 

that X = 0.27 and q,,, = 0. 385, respectively. Calculating X/Xop = 11.4, 

Figure “3: 6 with (Y+ 2)X = 1.5 indicates that r)/qmax= 0.28. Hence, the 

structure loss factor Q~‘O. 108. This procedure is repeated for each frequency 

selected for analysis in the frequency range of interest, and the results are 

recorded in the chart of Figure 4. 3. A curve is passed through discrete data 

points to develop the continuous functions for loss factor q versus frequency 
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and resonant frequency f, versus uncoupled natural frequency fo presented 

graphically in Figure 4.4. In this example, the viscoelastic damping material 

loss factor fi was considered‘essentially independent of frequency so that 

the optimum shear parameter X op .and the maximum structure loss factor Q,,, 

were also independent of frequency. In general, however, @ and hence 

X 
OP and Vmax will vary with frequency. 

The automated design procedure outlined in Section 3 of the report 

may be applied by introducing into the digital computer program the values 

of the geometrical parameter Y = 3.54, shear parameter coefficient C = 0.327, 

loss factor 8= 1.4, and appropriate values of the ratio G’/f for each 

frequency selected for analysis. The output from the computer is presented 

in the chart below. The difference in the value of q and f. shown in 

DIGITAL COMPUTER OUTPUT FOR DESIGN EXAMPLE 

G ‘/f B X f0 77 f=f r 
4.6!3388 1 .L;fiG,Z(il 3 l !!Jt5234 4*4161ti ti*lti4&3 ills 
3 l 4BGG0 I .40000 2 l 2WYb6 Id*03142 tie13894 2rii 
2 l tj000i4 1 l 400WB 19 78465 lb*3ti129 0*1644b 30 
2 020000 1.40000 1 -36664 26.19738 0*2.w105 50 
l-86030 1 l 40000 1.13029 3-i l 5S2b;;i G 922444 70 
1 l 60000 1 l 40000 0.94t51.4 55*01309 65 l 2564b 100 
1 l 20000 1 l 40000 0966996 116*7E366 0 l 3093ki 280 
1 .goiiiiiio 1 l 40000 cl l 53346 1b3.32575 8 l 340 12 3G0 
0 l 7b’GGG 1 .40000 r;s l 3bb32 32ie4u796 0 037205 5013 
0=6710&J 1 .40000 0.31978 45b.b3544 0.3826b 700 
0.56500 1 040000 G 025635 -dl&.51;J02 fd=dt55106 1 IDklv) 

Figure 4.3 and in the chart of the digital computer output indicate the degree 

of accuracy that can be expected using the manual design procedure. For this 

particular structural composite design, a comparison of the predicted and 

experimentally determined values of the structure loss factor TJ is presented 

in Figure 4.6(C). The difference between the theoretical prediction and the 

experimental measurements indicated by Figure 4.6(C) is considered typical 

of that which can generally be expected. 
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For a free-free beam of length L, the natural frequency equation is 

given by [Ref. 91 

an 6 
an = 2nL2 (52) 

where CI! n = 22.4, 61.7, 121 and 200 for the first four modes of vibration. 

Using this equation and the values of (EI)o and w given above for a beam 

length L= 30 inches, the values of the uncoupled natural frequency f. for 

the first four modes of vibration are 14.6, 40, 78. 5 and 130 Hz, respective.ly. 

By use of the graphical presentation of the resonant frequency fr versus the 

uncoupled natural frequency f. shown in Figure 4.4(a), the resonant frequency 

for the first four modes of vibration are determined and presented in the chart 

below. For purposes of comparison, the experimentally determined resonant 

) IvlTe Experimelal fr(Hz)i 

2 

1 Theoreti;: fr(Hz) 

74 

1 

61 

3 140 127 

4 220 175 

frequencies for the first four modes of vibration of the free-free beams are 

also presented. The agreement is reasonably good in view of the fact that the 

accelerometer and counter weight placed on the beam, as shown in Figure 4.5, 

would cause a reduction in the experimental resonant frequency because of the 

additional mass loading. 

The automated design procedure was employed to predict the structure 

loss factor as a function of frequency for 27 different two-elastic-element 

structural composite beam specimens in a manner similar to that outlined in the 

design example. A discussion of the method employed to experimentally 

determine the structure loss factor versus frequency follows. 
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Measurement of Structure Loss Factor 

The decay rate method was selected to measure the loss factor of the 

viscoelastic shear-damped beam specimens since the measurements can be 

made with considerable speed and the method is generally accepted by 

researchers in the field of structural damping [Ref. 13-151. Repeated meas- 

urements of vibration decay can be made on a structural member under the 

same conditions in rapid sequence thereby providing an accurate measurement 

of damping through averaging of data. If the rate of decay is measured in 

terms of the reverberation time T60 , the structure loss factor r) is given by 

2.2 
rl 

2. 2rr 

= fr T60 = T60 (53) 

where T60 is the time required for the amplitude of free vibration to be 

attenuated by 60 db (corresponding to a factor of lOOO), fr is the resonant 

frequency of the decaying vibration for the particular mode of vibration being 

evaluated, and rr = l/f, is the period of the vibration at each particular 

resonance. 

The experimental system for measuring the loss factor of the visco- 

elastic shear-damped beam specimens is shown in Figure 4. 5; the instrumenta- 

tion for the experimental system is identified in the chart presented below. 

Acoustic Research, Inc. 
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The structural specimen is supported vertically by a string suspension. A 

small driver coil is cemented to the specimen in a manner which will add a 

minimum amount of stiffness or weight and allow centering of the driver coil 

within the magnetic housing of the electrodynamic exciter, which provides a 

linear magnetic field for the driver coil. The electrodynamic exciter, which 

is driven by the harmonic oscillator through a power amplifier, is capable of 

delivering 25 watts of power to a beam specimen for an extended period of 

time at a maximum linear peak-to-peak displacement of one half inch. 

The response of the beam specimen is detected by the accelerometer 

which is mounted near the end of the beam with a counter weight of equal 

magnitude mounted on the opposite end of the beam for purposes of balance. 

The high-pass filter is used to reject all frequencies less than the particular 

resonant frequency at which the loss factor is being measured. The decay 

rate meter provides electronic SW itching between two alternating functions: 

(1) processing the signal from the high-pass filter through a logarithmic 

amplifier, and (2) generating a calibrated logarithmic decay signal. The 

oscilloscope provides alternate displays of the logarithmic decay signal 

representing the beam vibration and the calibrated logarithmic decay 

signal. 

The experimental procedure for the measurement of structure loss 

factor is as follows. The structural specimen is excited by harmonic vibra- 

tion and, when a resonant frequency is located, allowed to attain a steady- 

state vibration condition. The cut-off frequency of the high-pass filter is 

set approximately at the resonant frequency. As part of the electronic 

switching function performed by the decay rate meter, the excitation vibration 

is abruptly removed from the structure and the ensuing vibration decay is 

sensed by the accelerometer. The accelerometer signal is processed 

through the cathode follower amplifier, high-pass filter and decay rate 

meter. The decay rate meter processes the signal through a logarithmic 

amplifier and generates a separate calibrated logarithmic decay signal. The 

structure vibration decay signal and the calibrated decay signal are 

alternately displayed on the oscilloscope on a repetitive basis thereby 

allowing adjustment of the calibrated decay signal to match the vibration 
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decay signal. ‘When the calibrated decay signal is adjusted to match the 

structure vibration decay signal, the value of the reverberation time T60 is 

read from the decay rate meter and the structure loss factor is calculated 

from Equation (5 3). 

Loss factor measurements are made at the various resonances of the 

structure and, therefore, data is obtained at discrete frequencies. However, 

a curve may be passed through the discrete loss factor data points to generate 

a description of loss factor as a continuous function of frequency. The 

connotation is that if the structure were to resonate at an intermediate 

frequency, the continuous curve of loss factor versus frequency indicates 

the loss factor which exists for that particular mode of vibration. 

The filter in the experimental system places a limitation on the 

maximum value of structure loss factor which can be measured accurately. 

Because of its “ringing” characteristic, the filter itself exhibits a decay 

rate characteristic and, hence, the experimental system may be employed 

only to measure vibration decay rates which are less than that of the filter. 

The active high-pass filter was selected because of its high rejection 

rate (24 db/octave) below the cut-off frequency and its favorable ringing 

characteristic. Based on the fact that the effective loss factor of the 

filter was generally greater than 0.5 over the frequency range of interest 

(10 Hz to 1000 Hz), data can confidently be obtained for structure loss 

factor measurements as high as 0.4. Actually, even if the range of loss 

factor measurement was not limited by the filter ringing characteristic, 

there would be another limitation imposed by the physical difficulty encoun- 

tered in interpreting the decay of a signal having a few cycles of oscillation, 

which would be the case for values of loss factor greater than 0.4. It is 

concluded that the experimental system is capable of measuring maximum 

values of structure loss factor equal to 0.4 with a high degree of confidence; 

however, a sharp decrease in confidence exists for measurements between 

0.4 and 0.5. 
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Theoretical and Experimental Structure Loss Factor Data 

Theoretically predicted and experimentally determined values. of struc- 

ture loss factor are shown graphically in Figures 4. 6 to 4.10 for 27 different 

viscoelastic shear-damped composite structural beams having cross-sections 

illustrated in Figure 4. 1. The relevant modulus and dimension data are 

presented with each graph as well as the value of the geometrical parameter Y. 

Theoretical predictions are presented as a continuous curve and the results of 

measurements are indicated by discrete data points. 

Structure loss factor data for 12 composite structural beams comprised 

of a lamination of two solid sheets are shown in Figure 4.6 for the following 

structural material combinations: (A)-(F) both solid sheets aluminum; (G)-(J) 

one solid sheet steel and one solid sheet aluminum; (K), (L) one solid sheet 

fibre-glass and one solid sheet aluminum. In addition to the different modulus 

combinations, data are provided for a range of elastic element thickness ratios. 

In general, the experimental values of structure loss factor are greater than the 

theoretical values for the aluminum-aluminum combinations; the experimental 

values are extremely close to the theoretical values for the steel-aluminum 

combinations; finally, the experimental values are less than the theoretical 

values for the fibre-glass-aluminum combinations. 

Structure loss factor data for 8 composite structural beams comprised 

of a lamination of a solid and a honeycomb sheet are shown in Figure 4.7 for 

the following structural material combinations: (A)-(F) both solid and 

honeycomb sheets aluminum; (G) solid sheet steel and honeycomb sheet 

aluminum; (H) solid sheet fibre-glass and honeycomb sheet aluminum. For 

the aluminum-aluminum combinations,data are provided for a range of elastic 

element thickness ratios. In general, the experimental values of structure 

loss factor are less than the theoretical values for the aluminum-aluminum 

and fibre-glass-aluminum combinations, whereas the experimental values are 

greater than the theoretical values for the steel-aluminum combination. 

Structure loss factor data for 3 composite structural beams comprised 

of a lamination of aluminum honeycomb sheets having various combinations of 

skin thicknesses are shown in Figure 4.8 (A-C). The experimental values of 

structure loss factor are less than the theoretical values in all cases. 
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Structure loss factor data for 3 composite structural beams comprised 

of a lamination of an aluminum or steel solid sheet and an aluminum channel 

section are shown in Figure 4. 9. For the aluminum-aluminum combinations 

represented in Figure 4. 9(A,B), the experimental values of structure loss 

factor are equal to or greater than the theoretical values whereas, for the 

steel-aluminum combination represented in Figure 4. 9(C), the experimental 

values are equal to or less than the theoretical values. 

Structure loss factor data for one composite structural beam comprised 

of a back-to-back lamination of two aluminum channel sections is shown in 

Figure 4. 10. The experimental values of the structure loss factor are greater 

than the theoretical values. 

Sources of errors. - The difference between the predicted and measured 

values of structure loss factor indicated in Figures 4. 6 to 4. 10 provide specific 

guidelines for anticipated discrepancies between theory and measurement for 

the various cross-section design configurations. No general rule for correct- 

ing theoretical predictions of loss factor for two-elastic-element structural 

composites is immediately apparent. However, all experimental data for 

structure loss factor consistently exhibits the same trend with frequency as 

predicted by the theory. Furthermore, structural composite designs having 

larger values of the geometrical parameter Y consistently exhibit higher 

values of the structure loss factor. 

An obvious source of error is the energy dissipation which is introduced 

by damping mechanisms other than that involving the viscoelastic damping 

material; these would include air, structural material, and specimen support 

damping mechanisms. The theory assumes that the viscoelastic shear-damping 

mechanism is the only one present. This assumption appears to be justified 

since the degree of damping obtained from properly designed viscoelastic shear- 

damping mechanisms is substantially greater than that available from other 

damping mechanisms. Also, there will be errors due to the fact that a 

particular structural composite will not, in general, satisfy all of the basic 

assumptions enumerated on page 36. 

The errors involved in experimentally .determining the structure 

loss factor ?J can be separated into two categories. The first category 
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encompasses those errors involved with not having a beam with the 

dimensions and physical properties that were assumed. In the second 

category are those errors involved with not measuring the loss factor 

exactly. 

The errors in the first category can be divided into those involved 

with the parameters Y, X, and B. The geometrical paramter Y is a straight- 

forward calculation depending on the dimensions of the cross-section and the 

modulus of elasticity of the structural material used. For most structural 

materials, the modulus of elasticity can be (or has been) accurately determined. 

One source of error in calculating Y is in not knowing the dimensions 

exactly (e. g., honeycomb structures). Also, the effects of the core are 

usually neglected when dealing with honeycomb structures. Another possible 

source of error in determining Y is to read the design graphs incorrectly and/or 

make mistakes in the mathematical calculations. 

The shear parameter X is a function of the width Bv and thickness Hv 

of the viscoelastic damping layer, the distance between the neutral axis of 

the two elastic elements d, the geometrical parameter Y, the static flexural 

rigidity (EI) d , the weight per unit length of the beam w, the frequency of 

vibration f, the viscoelastic material loss factor B, and the storage modulus 

of the viscoelastic material G ‘. The width of viscoelastic damping layer Bv 

in most cases can be determined with good accuracy. The thickness Hv , 

however, is more difficult to determine accurately, with unfortunate 

consequences. For a nominal thickness Hv = 0.005 in., an error in measure- 

ment of 0.001 in. can cause a 20 per cent error in the shear parameter which, 

in some cases, can cause a 20 per cent error in the structure loss factor. The 

distance d can be determined with considerable accuracy, except in those 

cases where it is very small; however, these cases are poor designs with 

regard to structural damping. The problem of determining (EI)a is the same 

as for Y. Since the density of materials generally is accurately determined, 

the problem of determining w is the same as for Y. The frequency f is 

assumed given and therefore does not represent a source of error. 

There remains the loss factor j3 and the storage modulus G’ of the 

viscoelastic damping material to consider. These quantities are not easily 
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determined and they are quite variable, depending on many factors. Frequency 

and temperature have the biggest effects on the values of p and G’; the 

magnitude and history of the shear strain also may affect their values [Ref. 161 

Statistical analysis of experimental data. - The experimentally 

determined values of structure loss factor qe are plotted versus their 

theoretically predicted values rl t in Figure 4.11, where the data point 

symbols are identified in the chart below. A linear regression of q, on nt , 

SYMBOLS FOR EXPERIMENTAL STRUCTURE LOSS FACTOR DATA 

Configuration I Symbol I Structural Material Combination 

Laminated 
Beams 

(Ed Al urn inum (E2) Aluminum 
(El ) Steel (E2) Aluminum 
(El) Fibre-glass (E2) Aluminum 

Cons tra ined 
Honeycomb 

Lam ina ted 
Honeycomb 

none (EJ Fibre-glass (EH) Aluminum 

+ (E, ) Aluminum (Ez) Aluminum 

Constrained 
Channel 

Double 
Channel 

(El) Aluminum 
(E,) Steel 

(E,) Aluminum 

(E2) Al urn inum 
(E2) Aluminum 

(EzJ Aluminum 

representing a least squares fit for qe , was obtained for the 118 data points 

for which the equation is 

rl, = 0.001+ 1.05 r$ (53) 

The regression line indicates that the damping accountable from sources other 

than the viscoelastic shear-damping mechanism is equivalent to an effective 

structure loss factor of 0.001; also, the structure loss factor is predicted 

five per cent too low on the average. However, these numbers are both quite 

small and it is felt that what is more significant is that the equation for this 

line is approximately ?J, M ‘r+ , which supports the theory. 
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A statistical analysis was made of the 118 values of the loss factor 

ratio qe/qt . The accepted statistical mean for variables which are ratios 

is the geometrical mean [Ref. 173. The geometric mean of ve/qt for all 

the experiments is 1.006, indicating excellent agreement between theory 

and experiment. The statistical distribution of the ratio qe/qt is naturally 

skewed, since about half of the values fall between zero and one, and the other 

half between one and infinity. Therefore, it is reasonable to determine the 

statistical distribution of the logarithm of the ratio qe/qt . This is in agree- 

ment with using the geometric mean since the logarithm of the geometric mean 

is the arithmetic mean of the logarithms of the values being analyzed. 

The standardized probability density of ln(ve/qt) is shown compared 

to that of a normal distribution in Figure 4. 12, where the standardized value 

of ln(qe/qt) is given by the ratio of the difference between the value of 

ln(qe/qt) and the mean value to the standard deviation (root-mean-square) of 

the In (qe/qt) values. It is approximately a normal distribution, which would 

be an expected result if the distribution is caused by many factors, none of 

which represents a predominant influence. The previous discussion of 

sources of errors suggests that this is the case for the problem related to 

the prediction and measurement of structure loss factor. 

The standard deviation of ln(qe/?+) is + 0.28. Therefore, using the 

mean value ?je/?+ M 1. 0 and assuming a normal distribution, it can be 

expected that 68 per cent of the values of qe/qt will be between 0.76 and 

1. 32 and 95 per cent will be between 0.57 and 1.75. This value of the 

standard deviation, while somewhat high, seems reasonable considering 

the previous discussion on errors. As an alternate statistical measure, the 

per cent error relative to qt defined by 100(?~~-~+)/~+ indicates that 

68 per cent of the experiments will have an error between +32 per cent and 

-24.5 per cent. Based on the results of the statistical analysis of the 

experimental data compared to the theoretical predictions, it is concluded 

that the existing theory and design procedures for calculating the loss factor 

of two-elastic-element viscoelastic shear-damped structural composites is 

satisfactory within accepted engineering accuracy, 
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CONCLUSIONS 

The research investigation has resulted in (1) the generation of 

extensive design data for the geometrical properties of viscoelastic shear- 

damped structural composites, (2) the development of manual and automated 

design procedures for predicting the loss factor of two-elastic-element 

viscoelastic shear-damped structural composites, and (3) the performance 

of laboratory experiments which have confirmed the adequacy of the existing 

theory and design procedures developed. Specific conclusions drawn are: 

(1) The ttgeometrical parameter” determined solely by cross-section 

geometry and the modulii of the elastic elements comprising the structural 

composite is a fundamental design parameter which plays a significant role 

in the performance of all structural composite designs incorporating 

viscoelastic shear-damping mechanisms. 

(2) With regard to predicting the structure loss factor, the assumption 

that the effective flexural rigidity is the real part of the complex flexural 

rigidity has been confirmed. 

(3) Based on a statistical analysis of the experimentally determined 

values of structure loss factor, the existing theory and design procedures 

for calculating the loss factor of two-elastic-element viscoelastic shear- 

damped structural composites is satisfactory within accepted engineering 

accuracy. 

It is anticipated that the results of the research investigation will prove 

useful to structural design engineers, especially those concerned with control- 

ling the vibration response of air-borne and aerospace structural assemblies. 

Recommendations for additional research work on structural composites 

with shear-damping mechanisms include: 

(1) Theoretical analysis and experimental verification of structure 

loss factor for three-elastic-element viscoelastic shear-damped structural 

composites. 
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(2) Evaluation of the accuracy of various methods for predicting the 

effect of damping on the structural resonant frequencies. 

(3) Development of applicable equations and design graphs for the 

structure loss factor and resonant frequency of structural composites with 

viscous shear-damping mechanisms. 

(4) Application of shear-damping structural design techniques to 

realistic structural members (prediction and experimental verification) beginning 

with relatively simple constructions, such as frames and chassis, and 

concluding with more complex assemblies such as scale models of spacecraft 

structures. 
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Figure 2. 1 Cross-sections of viscoelastic shear-damped plates 
consisting of laminated solid structural sheets: 
(a) two sheets, (b) N identical sheets, (c) three sheets 
(symmetrical) and (d) tnree sheets (unsymmetrical) 
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Figure 2.2 Cross-sections of viscoelastic shear-damped plates 
consisting of laminated honeycomb and solid structural 
sheets: ( ) a single-constrained, (b) double-constrained 
(symmetrical) and (c) double-constra ined (unsymmetrica 1). 
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Figure 2. 3 Cross-sections of viscoelastic shear-damped plates 
consisting of laminated honeycomb structural sheets: 
(a) two sneets, (b) N identical sheets, (c) three sheets 
(symmetrical) and (d) three sheets (unsymmetrical) 
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Figure 2.4 Cross-sections of viscoelastic shear-damped double- 
constrained structural plates and beams incorporating 
(a) box-beam and (b) I-beam constructions where b = C Ab 
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Figure 2.5 Cross-sections of viscoelastic shear-damped structural 
bar designs, 
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Figure 2.6 Cross-sections of viscoelastic shear-damped structural 
tube designs 
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Figure 2. 7 Cross-sections of viscoelastic shear-damped structural 
shape beams: (4 angle, (b) channel, (c) T-section and 
(d) I-section, where the basic structural shapes are of 
constant thickness Ha 
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Figure 2. 8 Cross-section of a viscoelastic shear-damped dumbbell 
model where areas Al and Aa may be of any shape 
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Figure 2. 9 Cross-sections of viscoelastic shear-damped composite 
structural beams of multilaminate construction: (4 angle, 
~)c;~nn~w~ig~~ I-section, (d) T-section, and (e) hat- 
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Figure 2.10 Cross-sections of viscoelastic shear-damped composite 
structural beams of cell-insert construction: (a) square 
tube, (b) hat-section, (c) angle, (d) flat bar, (e) I-section 
and (f) channel designs 
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Figure 2. 11 (A) Design equations for geometrical properties of 
viscoelastic shear-damped plates consisting of 
laminated solid structural sheets. 
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Figure 2. 11 (B) Geometrical parameter of composite structural 
plate comprised of two solid sheets 
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Figure 2. 11 (C) Geometrical parameter of symmetrical composite 
structural plate comprised of three solid sheets 
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Figure 2. 11 (D) Geometrical parameter of unsymmetrical composite 
structural plate comprised of three solid sheets. 
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Figure 2. 11 (E) Geometrical parameter of unsymmetrical composite structural 
plate comprised of three solid sheets for various values of the 

.i viscoelastic thickness parameter V = Hv/(H1+ Hz) 
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Figure 2. 11 (F) Comparison of the geometrical parameters Y, and Yu of 
the symmetrical and unsymmetrical three-elastic-element 
composite structural plates. 
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Figure 2. 11(G) Relationship between the modulus ratio E1/Ez and thick- 
ness ratio HI/H2 to provide the indicated maximum value 
of geometrical parameter (Yo)max for viscoelastic shear- 
damped plates consisting of two and three solid structural 
sheets 
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Figure 2. 12(A) Design equations for geometrical properties of viscoelastic 
shear-damped plates consisting of laminated honeycomb and 
solid structuraL sheets 
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Figure 2. 12(B) Geometrical parameter of single-constrained’honeycomb 
structural plate comprised of one honeycomb and one solid 
sheet for various values of the modulus ratio E1/E~ 
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Figure 2. 12(C) Geometrical parameter of symmetrical double-constrained 
honeycomb structural plate comprised of one honeycomb 
and two solid sheets 
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Figure 2. 12 (D) Geometrical parameter of unsymmetrica 1 double-constrained 
honeycomb structural plate comprised of one honeycomb 
and two solid sheets for various values of the modulus 
ratio E1/EH 
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Figure 2. 13(A) Design equations for geometrical properties of viscoelastic 
shear-damped plates consisting of laminated honeycomb 
structural sheets. 
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Figure 2. 13(B) Geometrical parameter of composite structural plate comprised 
of two honeycomb sheets for a modulus ratio El/E2 = 1 and 
various values of the thickness ratio HJHz 
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Figure 2. 13(C) Geometrical parameter of symmetrical composite structural 
plate comprised of three honeycomb sheets for a modulus 
ratio El/E2 = 
ratio H1 /Hz 

1 and various values of the thickness 

93 



94 

” 

s2 

0.1 
0.001 0.01 0.1 

THICKNESS RATIO. %,/I+, 

(a I E,/E.=3; H/H,=‘225 

10 

0.1 
0.001 0.01 0.1 

THICKNESS RATIO. y,/%, 

CC 1 E,/E,=3; H,/H& 

100 

THICKNESS RATIO, H=/h2 

. 0Ja01 * 0010 0 0200 

0 0002 c 0.020 0’ 0300 

0 0003 u 0030 * 0.500 

+Qoo5 H 0050 x 0.700 

x Om7 = 0070 * LOW 

. 0.100 

0.01 0.1 

THICKNESS RATIO.Y,/Y, 

(b) E,/E,.3; H,/H#QS 

0.01 0.1 

THICKNESS RATIO, y,/y, 

Cd 1 E&.3; y/H,=2 

Figure 2. 13(D) Geometrical parameter of symmetrical composite structural 
plate comprised of three honeycomb sheets for a modulus 
ratio- El/E2 = 3 and various values of the thickness 
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Figure 2. 14 Design equations and geometrical parameter of viscoelastic 
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Figure 2.15 (A) Design equations for geometrical properties of viscoelastic 
shear-damped bars consisting of a multiplicity of longitudinal 
elastic elements arranged to produce various cross-section 
shapes 
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Figure 2. 15 (A) Continued 
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Figure 2. 15 (B) Geometrical parameter of composite structural bar having a 
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Figure 2 -15 (F) Geometrical parameter of composite structural bar having a 
square cross-section shape for a dimension ratio H/A = 0.05 
and number of insert elements N ranging from one to infinity 
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Figure 2.15 (G) Geometrical parameter of composite structural bar having a 
square cross-section shape for a dimension ratio H/A = 0.1 
and number of insert elements N ranging from one to infinity 
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Figure 2. 15 (H) Geometrical parameter of composite structural bar having a 
square cross-section shape for dimension ratios H/A = 0.15 
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Figure 2.16 (A) Design equation for geometrical properties of viscoelastic 
shear-damped tubes consisting of a combination of solid 
structural tubes and longitudinal elastic constraining 
elements 
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Figure 2.16(B) Geometrical parameter of composite structural tube having a 
square cross-section shape for a dimension ratio Hz/A = 0.05 
and number of constraining strips N ranging from one to infinity 
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Figure 3.2 Coupling parameter for two-elastic-element viscoelastic 
shear-damped structural composites 

134 



I 

2.5 

0.1 1.0 IO 

GEOMETRICAL PARAMETER, Y 
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Figure 3.6 Loss factor ratio for two-elastic-element viscoelastic 
shear-damped structural composites defining the reduction 
in structure loss factor for non-optimum values of the 
shear parameter 

138 



I2 

8 

4 

0 
0.1 

- 

- 

- 

- 

- 

- 

- 

H 

* 

# 

c 

# 
c 
c 

c 
c 

- 

1.0 

GEOMETRICAL PARAMETER, Y 

c 

/ 

7 
L 

, 
, 
I 

;9’ 
L’ ,’ 

t 
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viscoelastic shear-damped structura1 composite8 
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Figure 3.8 Comparison of static stiffness of viscoelastic shear-damped 
structural composites with that of solid structural members 
having an equivalent weight 
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figure 3.9 Comparison of weight of a viscoelastic shear-damped composite 
structural plate design comprised of two solid sheets with that of 
a solid plate having an equivalent static stiffness 
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Figure 3.10 Static load distribution curves for viscoelastic shear- 
damped composite structural plate comprised of two 
solid structural sheets 
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Figure 4.1 Cross-sections of two-elastic-element viscoelastic shear-damped 
structural composite beams fabricated for experimental evaluation 
of structure loss factor 
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Figure 4.2 Dynamic elastic characteristics of viscoelastic shear-damping 
material (3M No. 466 tape) used in the structural composite 
beams evaluated theoretically and experimentally for their 
structure loss factor characteristics 
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f B G ‘/r f/f f X X 
0 0 oP 

pop.4 1 4.65 1 2.03 1 4.93 1 3.08 1 0.27 11.4 I 0.28 I 0.385 I 0.108 

20 1.4 3.4 2.00 10.0 2.22 0.27 

30 1.4 2.8 1.95 15.4 1.785 0.27 

50 1.4 2.2 1.91 26.2 1.37 0.27 

1 70 1 1.4 -1 1.86 1 1.86 137.1 11.13 T 0.27 

x’xoP “71max rlmax rl 

8.22 1 0.35 1 0.385 1 0.135 

6.62 1 0.42 1 0.385 ( 0.162 

5.07 0.5 0.385 0.193 

4.18 0.575 0.385 0.221 

3.57 0.64 0.385 0.246 

2.51 0.8 0,385 0.308 

2.0 0.88 0.385 0.339 

1.47 0.97 0.385 0.374 

1.2 0.99 0.385 0.381 

0.96 1.0 0.385 0.385 

Figure 4.3 Manual design procedure calculations for the design example where each 
discrete frequency f represents a potential resonant frequency fr of the 
structural composite beam 
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Figure 4.4 Theoretical prediction of (a) resonant frequency and 
(b) structure loss factor for the design example 
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Figure 4.5 Experimental system for measuring the loss factor of viscoelastic 
shear-damped composite structural beam specimens 
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El= 10.3 X IO6 psi 

E2=10.3 X IO6 psi 

HI =0.0310 in 
Hz= 0.0875 in 
HV=0.0051 in (3M No.466 Tape) 
8=3in 
L q 30in (Free- Free Beam) 

Figure 4.6 (A) Theoretically predicted and experimentally determined 
values of structure. loss factor for a viscoelastic 
shear-damped beam comprised of two solid aluminum 
sheets for which the geometrical parameter Y = 1.62 
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E,=l0.3 X10’ PSI 

E2’10.3 x lo6 psi 
HI-0.0385 in 
Hz= 0.0798 in 
Hp0.0049 in(3M No.466 Tape) 
8= 3in 
L = 30 in (Free- Free Beam) 

FREQUENCY (Hz) 

Figure 4.6 (B) Theoretically predicted and experimentally determined 
values of structure loss factor for a viscoelastic 
shear-damped beam comprised of two solid aluminum 
sheets for which the geometrical parameter Y = 2.26 

149 



El = 10.3 X IO6 psi 

E2=10.3 x 10” psi 

HI = 0.0628 in 
H2= 0.0629 in 
HV=0.0055 In (3M No.466Tope) 
B-3in 
L = 30 in (Free-Free Beam) 

FREQUENCY (Hz) 

Figure 4.6 (C) Theoretically predicted and experimentally determined 
values of structure loss factor for a viscoelastic 
shear-damped beam comprised of two solid aluminum 
sheets for which the geometrical parameter Y = 3.55 



E, = 10.3 X IO6 psi 

E2= 10.3 X IO6 psi 
HI-0.0193 in 
H2=0.1254 in 
Hy=0.0050 in (3M No.466 Tape) 
B=3in 

L = 30 in (Free -Free Beam) 

FREQUENCY (Hz) 

Figure 4.6(D) Theoretically predicted and experimentally determined 
values of structure loss factor for a viscoelastic 
shear-damped beam comprised of two solid aluminum 
sheets for which the geometrical parameter Y = 0.61 
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EI=10.3 X IO6 psi 

E2=10.3 x IO6 psi 
HI =0.0188 in 
Hz= 0.0381 i n 
HV=0.0051 in(3M No.466 Tape) 
B=3 in 
L = 30 in (Free- Free Beam) 

FREQUENCY (Hz) 

Figure 4.6(E) Theoretically predicted and experimentally determined 
values of structure loss factor for a viscoelastic 
shear-damped beam comprised of two solid aluminum 
sheets for which the geometrical parameter Y = 2.83 
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El=l0.3 X 106psi 
E2=10.3 X IO6 psi 

H,=0.0311 in 
” Hz= 0.031 I in 

HV=0.0048 in(3M No. 466 Tape) 
B=3in 
L = 30in (Free-Free Beam) 

l EXPERIMENTAL 

FREQUENCY (Hz) 

Figure 4.6(F) Theoretically predicted and experimentally determined 
values of structure loss factor for a viscoelastic 
shear-damped beam comprised of two solid aluminum 
sheets for which the geometrical parameter Y = 4.00 
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E,=30 x IO6 psi 

E2=10.3 x l@psi 
H,=0.0281 in 
HZ= 0.0880 in 
HV=0.0049in(3M No.466 Tape) 
B= 3in 

L = 30in(Frec-Free Beam) 

FREQUENCY (Hz) 

Figure 4.6(G) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one steel and one aluminum solid sheet for which 
the geometrical parameter Y = 2.69 
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El=30 X IO6 psi 

E2=10.3 X IO6 psi 
H,=0.0491 in 
Hz= 0.0798 i n 
Hv= 0.0056 in (3 M No. 466 Tape 
B=3in 
L = 30 in (Free-Free Beam) 

FREQUENCY (Hz) 

Figure 4.6(H) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one steel and one aluminum solid sheet for which 
the geometrical parameter Y = 3.54 
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El= 30 X IO6 psi 
-.-..& -. 

I-- 
E2=10.3 x lo6 psi 

HI HI = 0.0601 in 
f- H2=O.O626 in 

Hv=0.0050 in (3 M No.466 Tape) 
B=3in 

L= 30in(Free-Free Beam) 

FREQUENCY (Hz) 

Figure 4.6 (I) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one steel and one aluminum solid sheet for which 
the geometrical parameter Y = 2.83 
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E,=30X106psi 

E2= 10.3 X IO6 psi 
HI = 0.0196 in 
H2=0.1259 in 
H”= 0.0049 in (3M No.466 Tape) 

B=3in 
L = 30 in(Free-Free Beam) 

FREQUENCY (Hz) 

Figure 4 .6 (J) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one steel and one aluminum solid sheet for which 
the geometrical parameter Y = 1.41 
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E1=4.1 X 106psi 

E2= 10.3 X IO6 p si 
HI= 0.0230 in 

H2= 0.0384 in 
HV= 0.0051 in (3M No.466 Tape) 
B = 3in 

L = 30in (Free-Free Beam) 

FREQUENCY (Hz) 

Figure 4.6 (K) Theoretically predicted and experimentally determined values 
of structure loss factor for a vkcoelastic shear-damped beam 
comprised of one fibre-glass and one aluminum solid sheet 
for which the geometrical parameter Y = 1.84 
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E,=3.1 X IO6 psi 

E2= 10.3 X IO6 psi 
HI = 0.1284 in 

Y H2= 0.0634 in 
HV=0.0054 in(3M No.466 Tops) 
B=3in 
L = 30 in(Free-Free Beam) 

FREQUENCY (Hz) 

Figure 4.6(L) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one fibre-glass and one aluminum solid sheet 
for which the geometrical parameter Y = 3.31 
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EI=10.3 X IO6 psi 

E”zl0.3 X IO6 psi 
H,=0.0185 in 
HI-O.0160 in 
Hc = 0.3460 i n 
HV =0.0054 in (3 M No.466 Tope) 
B = I.5 in 
L = 24 in (Free- Free Beom) 

FREQUENCY (Hz) 

Figure 4.7(A) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one solid and one honeycomb aluminum sheet 
for which the geometrical parameter Y = 0.46 
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E,= 10.3 X IO6 psi 

EH= 10.3 X I06 psi 
HI= 0.0313 in 
Hs= 0.0160 in 
Hc= 0.3463 in 
~,,=0.0056 in(3M No.466 Tape) 

B= I.5 in 
L = 24 in (Free- Free Beam) 

I60 lo 

FREQUENCY (Hz) 

Figure 4.7(B) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one solid and one honeycomb aluminum sheet 
for which the geometrical parameter Y = 0.68 
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E,=l0.3 X IO6 psi 

E2=10.3 X IO Psi E2=10.3 X IO Psi 
~,=0.0634 in ~,=0.0634 in 

Hs=0.0160 in Hs=0.0160 in 
~~=0.3468 in ~~=0.3468 in 

HS Hv=0.0051 in(3M No.466 Tape) HS Hv=0.0051 in(3M No.466 Tape) 
B=l.5 in 
L = 24 in (Free- Free Beam) 

FREQUENCY (Hz) 

Figure 4.7(C) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one solid and one honeycomb aluminum sheet 
for which the geometrical parameter Y = 0.99 
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E,=i0.3 X IO6 psi 

E,=l0.3 X IO psi 
H, =0.0185 in 
Hs = 0.0320 i n 
Hc= 0.3154 in 

Hs Hv=0.0052 in(3M No.466 Tape) 
.- B = I.5 in 

L=24 in(Free-Free Beam) 

FREQUENCY (Hz) 

Figure 4.7 (D) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one solid and one honeycomb aluminum sheet 
for which the geometrical parameter Y = 0.32 
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Figure 4.7 (E) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one solid and one honeycomb aluminum sheet 
for which the geometrical parameter Y = 0.48 
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El= 10.3 X IO6 psi 
E,= 10.3 X IO6 psi 
HI= 0.0313 in 
Hs= 0.0320 i n 
H,=0.3152 in 
HV= 0.0051 in (3 M No.466 Tape) 
B = 1.5 in 
L = 24 in (Free - Free Beam) 
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Figure 4.7(F) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one solid and one honeycomb aluminum sheet 
for which the geometrical parameter Y = 0.84 
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Figure 4.7(G) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one solid steel and one aluminum honeycomb 
sheet for which the geometrical parameter Y = 0.45 
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H,= 0.0320 in 
Hc=0.3141 in 
HV=0.0053 in(3 M No.466 Tape) 
B= I.5 in 
L = 24 in(Free- Free Beam) 

Figure 4.7(H) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of one solid fibre-glass and one aluminum honeycomb 
sheet for which the geometrical parameter Y = 0.27 
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E2= 10.3 X IO6 p s i 
HSI= 0.0160 in 
Hcl=0.3451 in 
Hso=0.0160 in 
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B= I.5 in 
L = 24 in (Free-Free Beam) 
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Figure 4.8 (A) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of two aluminum honeycomb sheets for which the 
geometrical parameter Y = 1.14 
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Figure 4.8 (B) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of two aluminum honeycomb sheets for which the 
geometrical parameter Y = 1.24 
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Figure 4.8 (C) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of two aluminum honeycomb sheets for which the 
geometrical parameter Y = 1.05 
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El = 10.3 X IO6 psi 

E2’10.3 x lo6 psi 
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Figure 4.9(A) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of a solid aluminum sheet and an aluminum channel 
section for which the geometrical parameter Y = 0.26 
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Figure 4.9 (B) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of a solid aluminum sheet and an aluminum channel 
section for which the geometrical parameter Y = 0.47 
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Figure 4.9 (C) Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of a solid steel sheet and an aluminum channel 
section for which the geometrical parameter Y = 0.49 
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Figure 4.10 Theoretically predicted and experimentally determined values 
of structure loss factor for a viscoelastic shear-damped beam 
comprised of two back-to-back aluminum channel sections 
for which the geometrical parameter Y = 0.76 

174 



A 

/ 
n 

n 

T 

t 

I I 

REGRESSION LINE I I 
I 

. 
M 

I / 

T / + 

THEORETICAL LOSS FACTOR, ‘7t 

Figure 4 .ll Comparison of the experimental and theoretical values of 
loss factor for the composite structural beam specimens 
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Figure 4. 12 Comparison of the standardized probability density of 
Wqe/77,). shown as vertical bars, with tnat of a normal 
distribution, shown as the continuous curve 
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